

# INDONESIAN JOURNAL OF COMBINATORICS

# On (a,d)-antimagic labelings of $H_n$ , $FL_n$ and $mC_n$

R.Ramalakshmi<sup>a</sup>, KM. Kathiresan<sup>b</sup>

<sup>a</sup>Department of Mathematics, Rajapalayam Rajus' College, Rajapalayam -626 117, India. <sup>b</sup>Centre for Graph Theory, Ayya Nadar Janaki Ammal College, Sivakasi-626 124, India.

ramimani20@gmail.com, kathir2esan@yahoo.com

#### Abstract

In this paper, we derive the necessary condition for an (a,d)-antimagic labeling of some new classes of graphs such as  $H_n$ ,  $FL_n$  and  $mC_n$ . We prove that  $H_n$  is (7n + 2, 1)-antimagic and  $mC_n$  is  $(\frac{mn+3}{2}, 1)$ -antimagic. Also we prove that  $FL_n$  has no  $(\frac{n+1}{2}, 4)$ -antimagic labeling.

*Keywords:* antimagic labeling, (a, d)-antimagic labeling. Mathematics Subject Classification : 05C78 DOI: 10.19184/ijc.2020.4.2.3

#### 1. Introduction

The graphs considered here are finite, undirected and simple. The vertex[edge] set of a graph G is denoted by V(G)[E(G)] respectively. The weight w(v) of a vertex  $v \in V(G)$  under an edge labeling f is the sum of the values f(e) assigned to all edges incident to the vertex v.

A connected graph G(V, E) is said to be (a,d)-antimagic if there exists positive integers (a,d) and a bijection  $f : E(G) \to \{1, 2, ..., E(G)\}$  such that the induced mapping  $g_f : V(G) \to W$  is also a bijection where  $W = \{w(v) | v \in V(G)\} = \{a, a + d, ..., a + (|V(G)| - 1)d\}$ .

If G(V, E) is (a, d)-antimagic and  $f : E(G) \to \{1, 2, ..., |E(G)|\}$  is a corresponding bijective map of G then f is said to be an (a, d)-antimagic labeling of G.

Hartsfield and Ringel [6] introduced the concepts of an antimagic graph. An antimagic graph G is a graph whose edges can be labeled with the integers 1, 2, ..., |E(G)| so that sum of the labels

Received: 10 September 2019, Revised: 17 December 2020, Accepted: 24 December 2020.

at any given vertex is different from the sum of the labels at any other vertex, that is no two vertices receives the same weight. Some results about antimagic graphs can be seen in [1, 2, 3, 5].

We introduce a the new class of graph  $H_n$ . The graph  $H_n$ ,  $n \ge 3$  is defined as follows: Let  $I = \{1, 2, ..., n\}$  be an index set. We denote the vertex set of  $H_n$  by

$$V(H_n) = \{x_1, x_2, ..., x_n, y_1, y_2, ..., y_{2n}, z_1, z_2, ..., z_n\}$$

and the edge set of  $H_n$  by

$$E(H_n) = \{x_i x_{i+1} / i \in I\} \cup \{x_i y_{2i} / i \in I\} \cup \{y_i y_{i+1} / 1 \le i \le 2n\} \cup \{y_{2i-1} z_i / i \in I\} \cup \{z_i z_{i+1} / i \in I\}.$$

We make convention that  $x_{n+1} = x_1$ ,  $y_{2n+1} = y_1$  and  $z_{n+1} = z_1$ . In  $H_n$ ,  $|V(H_n)| = 4n$  and  $|E(H_n)| = 6n$ .

In [7], The flower graph  $FL_n$ ,  $n \ge 2$  is defined as follows: Let  $I = \{1, 2, ..., n\}$  be an index set. We denote the vertex set of  $FL_n$  by

$$V(FL_n) = \{u, u_1, u_2, ..., u_n, v_1, v_2, ..., v_{n-1}\}$$

and the edge set of  $FL_n$  by

$$E(FL_n) = \{uu_i / i \in I\} \cup \{u_i v_i / i \in I - \{n\}\} \cup \{u_i v_{i-1} / i \in I - \{1\}\} \cup \{u_1 u_n\}.$$

In  $FL_n$ ,  $|V(FL_n)| = 2n$ ,  $|E(FL_n)| = 3n - 1$ .

In [4], The graph  $mC_n$ ,  $m \ge 1, n \ge 3$  is defined as follows: Let  $I = \{1, 2, ..., m\}$  and  $J = \{1, 2, ..., n\}$  be two index sets. We denote the vertex set of  $mC_n$  by

$$V(mC_n) = \{x_{i,j}/i \in I \text{ and } j \in J\}$$

and the edge set of  $mC_n$  by

$$E(mC_n) = \{x_{i,j}x_{i,j+1} | i \in I \text{ and } j \in J\}.$$

We make the convention that for  $i \in I, j \in J, x_{i,n+1} = x_{i,1}$ . In  $mC_n, |V(mC_n)| = |E(mC_n)| = mn$ .

In this paper we prove that  $H_n$  is (7n + 2, 1)-antimagic and  $mC_n$  is  $(\frac{mn+3}{2}, 1)$ -antimagic. Also we prove that  $FL_n$  has no  $(\frac{n+1}{2}, 4)$ -antimagic labeling.

#### 2. Main Results

The following theorem gives the necessary condition for an (a, d)-antimagic labeling of the graph  $H_n$ .

**Theorem 2.1.** If  $H_n$ ,  $n \ge 3$  is (a, d)-antimagic, then d is odd and  $a = 9n - \frac{d}{2}(4n - 1) + \frac{3}{2}$ .

*Proof.* Let  $H_n, n \ge 3$  be (a, d)-antimagic. Then

$$W = \{w(v) | v \in V(G)\} = \{a, a + d, ..., a + (4n - 1)d.\}$$

Therefore,  $\sum_{v \in V(H_n)} w(v) = 2n[2a + (4n - 1)d]$ . Since  $H_n$  is (a, d)-antimagic, the edges of  $H_n$  are labeled by the set of integers  $\{1, 2, ..., 6n\}$ . Also each of the edge labels is used twice in the computation of the weights of the vertices. Therefore  $\sum_{v \in V(H_n)} w(v) = 2(1 + 2 + ... + 6n) = 6n(6n + 1)$ . Therefore 2n[2a + (4n - 1)d] = 6n(6n + 1) implies 2a + (4n - 1)d = 3(6n + 1). Thus  $d = \frac{3(6n+1)-2a}{4n-1}$ . Here a = 6 is the minimal value of weight which can be assigned to a vertex of degree three. For  $a \ge 6$ ,  $0 < d < \frac{9}{2}$ . d is odd for  $n \ge 3$ . Therefore d = 1, 3. For d = 1, a = 7n + 2 and for d = 3, a = 3n + 3. Also 2a + (4n - 1)d = 18n + 3 implies  $a = 9n - \frac{d}{2}(4n - 1) + \frac{3}{2}$ . Therefore (1) has exactly two different solutions (a, d) = (7n + 2, 1) and (a, d) = (3n + 3, 3) respectively.

The following theorem shows the existence of (7n + 2, 1)-antimagic labeling in  $H_n$ .

**Theorem 2.2.** For  $n \ge 3$ ,  $H_n$  has (7n + 2, 1)-antimagic labeling.

*Proof.* Define a mapping  $f : E(H_n) \to \{1, 2, ..., 6n\}$  as follows:  $f(x_i y_{2i}) = n - i + 1$  for  $1 \le i \le n$ ,  $f(y_{2i-1}z_i) = 2n - i + 1$  for  $1 \le i \le n$ ,  $f(y_i y_{i+1}) = \begin{cases} \frac{4n+i+1}{2} & \text{if } i \text{ is odd and } 1 \le i \le 2n - 1\\ \frac{10n+i}{2} & \text{if } i \text{ is even and } 1 \le i \le 2n, \end{cases}$   $f(x_i x_{i+1}) = 3n + i \text{ for } 1 \le i \le n,$  $f(y_{2i-1}z_i) = 4n + i \text{ for } 1 \le i \le n.$ 

Here the labeling f uses each integer 1, 2, ..., 6n exactly once.

The weight of the corresponding vertices are

$$\begin{split} & w(x_i) = f(x_i x_{i+1}) + f(x_i x_{i-1}) + f(x_i y_{2i}) = 7n + i \text{ for } 2 \leq i \leq n. \\ & w(x_1) = f(x_1 x_2) + f(x_1 x_n) + f(x_1 y_2) = 8n + 1. \\ & w(y_{2i}) = f(y_{2i-1} y_{2i}) + f(y_{2i} y_{2i+1}) + f(x_i y_{2i}) = 8n + i + 1 \text{ for } 1 \leq i \leq n. \\ & w(y_{2i+1}) = f(y_{2i+1} y_{2i}) + f(y_{2i+1} y_{2i+2}) + f(z_{i+1} y_{2i+1}) \\ & = 9n + i + 1 \text{ for } 1 \leq i \leq n - 1. \\ & w(y_1) = f(y_1 y_2) + f(y_1 y_2) + f(y_1 z_1) = 10n + 1. \\ & w(z_i) = f(z_i z_{i-1}) + f(z_i z_{i+1}) + f(z_i y_{2i-1}) = 10n + i \text{ for } 2 \leq i \leq n. \\ & w(z_1) = f(z_1 z_2) + f(z_1 z_n) + f(z_1 y_1) = 11n + 1. \\ & \text{Each vertex of } H_n \text{ receives exactly one label of weight from } \{7n + 2, 7n + 3, ..., 11n + 1\} \\ & \text{Therefore, } H_n \text{ has } (7n + 2, 1) \text{-antimagic labeling.} \\ & \Box \end{split}$$

The following theorem gives the necessary condition for an (a, d)-antimagic labeling of the graph  $FL_n$ .

**Theorem 2.3.** Let  $FL_n$ ,  $n \ge 2$  be (a, d)-antimagic. If n is even, then either d = 1 and  $a = \frac{7n-2}{2}$  or d = 3 and  $a = \frac{3n}{2}$ . If n is odd, then either d = 2 and  $a = \frac{5n-1}{2}$  or d = 4 and  $a = \frac{n+1}{2}$ . *Proof.* Let  $FL_n$ ,  $n \ge 2$  be (a, d)-antimagic. Then

$$W = \{w(v)/v \in V(FL_n)\} = \{a, a+d, ..., a+(2n-1)d\}$$

Therefore,  $\sum_{v \in V(FL_n)} w(v) = n[2a + (2n - 1)d]$ . Since  $FL_n$  is (a, d)-antimagic, edges of  $FL_n$  are labeled by the set of integers  $\{1, 2, \ldots, 3n - 1\}$ . Also each of the edge labeling is used twice in the computation of weights of the vertices. Therefore  $\sum_{v \in V(FL_n)} w(v) = 2(1+2+\ldots+3n-1) = (3n-1)3n$ . Therefore n[2a + (2n - 1)d] = 3n(3n - 1) implies 2a + (2n - 1)d = 3(3n - 1). Thus  $d = \frac{3(3n-1)-2a}{2n-1}$ . Here a = 3 is the minimal value of weight which can be assigned to a vertex of degree two. If  $a \ge 3, 0 < d < \frac{9}{2}$ .

When *n* is even, *d* is odd. Therefore d = 1, 3. For  $d = 1, a = \frac{7n-2}{2}$ . For  $d = 3, a = \frac{3n}{2}$ .

When n is odd, d is even. Therefore d = 2, 4. For  $d = 2, a = \frac{5n-1}{2}$ . For  $d = 4, a = \frac{n+1}{2}$ .

**Observation 2.1.** By direct verification, we have

1)  $FL_2$  has no (3,3)-antimagic labeling. 2)  $FL_2$  has no (6,1)-antimagic labeling. 3)  $FL_3$  has no (2,4)-antimagic labeling. 4)  $FL_3$  has (7,2)-antimagic labeling. 5)  $FL_4$  has (13,1)-antimagic labeling.

6)  $FL_5$  has no (3, 4)-antimagic labeling.

The following theorem shows that  $FL_n$  has no  $(\frac{n+1}{2}, 4)$ -antimagic labeling for  $n \ge 9$  and n is odd.

**Theorem 2.4.**  $FL_n$  is not  $(\frac{n+1}{2}, 4)$ -antimagic for  $n \ge 7$  and n is odd.

*Proof.* The vertex and edge set of  $FL_n$  are  $V(FL_n) = \{u, u_1, u_2, ..., u_n, v_1, v_2, ..., v_{n-1}\}$  and  $E(FL_n) = \{uu_i/i \in I\} \cup \{u_i v_i/i \in I - \{n\}\} \cup \{u_i v_{i-1}/i \in I - \{1\}\} \cup \{u_1 u_n\}$ . Then  $|V(FL_n)| = 2n$  and  $|E(FL_n)| = 3n - 1$ . Also d(u) = n,  $d(u_i) = 3$  for all  $1 \le i \le n$  and  $d(v_i) = 2$  for all  $1 \le i \le n - 1$ .

Suppose  $FL_n$  is  $(\frac{n+1}{2}, 4)$ -antimagic. Then there exists a labeling

$$f: E(FL_n) \to \{1, 2, \dots, 3n-1\}$$

and  $\{w(v)/v \in V(FL_n)\} = \{\frac{n+1}{2}, \frac{n+1}{2} + 4, ..., \frac{n+1}{2} + (2n-1)4\}$ . Suppose  $w(v_i) = \frac{n+1}{2} + (2n-1)4$  for some i = 1, 2, ..., n-1. Since  $d(v_i) = 2$  for all

Suppose  $w(v_i) = \frac{n-2}{2} + (2n-1)4$  for some i = 1, 2, ..., n-1. Since  $a(v_i) = 2$  for all i = 1, 2, ..., n-1, the maximum possible labels which are assigned to the edges incident with  $v_i$  are 3n-1 and 3n-2. But sum of these labels less than  $\frac{n+1}{2} + (2n-1)4$ . Hence  $w(v_i) \neq \frac{n+1}{2} + (2n-1)4$  for all  $1 \leq i \leq n-1$ . Also we can't assign the weights  $\frac{n+1}{2} + (2n-\frac{n+3}{2})4, \frac{n+1}{2} + (2n-1)4$ 

 $\frac{n+1}{2}$ )4, ...,  $\frac{n+1}{2}$  + (2n - 2)4 in any  $v_i$  for  $1 \le i \le n - 1$ . These weights can be assigned in u or  $u_i$  for  $1 \le i \le n$ .

Let  $K = \left\{\frac{n+1}{2} + (2n - \frac{n+3}{2})4, \frac{n+1}{2} + (2n - \frac{n+1}{2})4, \dots, \frac{n+1}{2} + (2n - 2)4\right\}$ . Then  $|K| = \frac{n+1}{2}$ . In  $FL_n$ , each  $u_i$  is of degree three and there is no common edge to two different  $u_i$  except  $u_1$  and  $u_n$ . If  $w(u_i) = k$  where  $k \in K$ , then the sum of any  $3(\frac{n+1}{2})$  numbers from the list  $\{1, 2, \dots, 3n - 1\}$  is always less than sum of elements in K for all  $n \ge 7$ , which is not possible. Therefore  $FL_n$  is not  $(\frac{n+1}{2}, 4)$ -antimagic labeling for  $n \ge 7$  and n is odd.

The following theorem gives the necessary condition for (a, d)-antimagic labeling of the graph  $mC_n$ .

**Theorem 2.5.** If  $mC_n, m \ge 1, n \ge 3$  is (a, d)-antimagic, then  $(a, d) = (\frac{mn+3}{2}, 1)$  and both m and n are odd.

Proof. Let  $mC_n, m \ge 1, n \ge 3$  be (a, d)-antimagic. Then  $W = \{w(v)/v \in V(mC_n)\} = \{a, a + d, ..., a + (mn - 1)d\}$ . Therefore,  $\sum_{v \in V(mC_n)} w(v) = \frac{mn}{2} [2a + (mn - 1)d]$ . Since  $mC_n$  is (a, d)-antimagic, edges of  $mC_n$  are labeled by the set of integers  $\{1, 2, ..., mn\}$ . Also each of the edge labeling is used twice in the computation of weights of the vertices. Therefore  $\sum_{v \in V(mC_n)} w(v) = 2(1 + 2 + ... + mn) = mn(mn + 1)$ . Therefore  $\frac{mn}{2} [2a + (mn - 1)d] = mn(mn + 1)$ . Implies 2a + (mn - 1)d = 2(mn + 1). Thus  $d = \frac{2(mn+1)-2a}{mn-1}$ . Here a = 3 is the minimal value of weight which can be assigned to a vertex of degree two. For  $a \ge 3, 0 < d < 2$ . Therefore d = 1. When d = 1,  $a = \frac{mn+3}{2}$ . Since a is an integer,  $mn + 3 \equiv 0 (mod2)$ . Therefore mn is odd. Thus both m and n are odd.

The following theorem shows the existence of (a, d)-antimagic labeling in  $mC_n$ .

**Theorem 2.6.** For  $m \ge 1$  odd and  $n \ge 3$  odd,  $mC_n$  is  $(\frac{mn+3}{2}, 1)$ -antimagic.

*Proof.* Define the edge labeling  $f : E(mC_n) \to \{1, 2, ..., mn\}$  by  $f(m, m_n) = i$  for  $1 \le i \le n$ 

$$f(x_{i,1}x_{i,n}) = i \text{ for } 1 \le i \le n,$$
  

$$f(x_{m-i,j}x_{m-i,j+1}) = \begin{cases} \frac{mj+i+1}{2} & \text{for } i = 1, 3, ..., m-2 \text{ and } j = 2, 4, ..., n-1 \\ \frac{(j+1)m+i+1}{2} & \text{for } i = 0, 2, ..., m-1 \text{ and } j = 2, 4, ..., n-1, \end{cases}$$

$$\begin{aligned} f(x_{m-i,n-k}x_{m-i,n-k+1}) &= \begin{cases} (mn+1) + \frac{i-km}{2} & \text{for } i = 0, 2, ..., m-1 \text{ and } k = 2, 4, ..., n-1, \\ (mn+1) + \frac{i-(k-1)m}{2} & \text{for } i = 1, 3, ..., m-2 \text{ and } k = 2, 4, ..., n-1. \end{cases} \end{aligned}$$

Here the labeling f uses each integer 1, 2, ..., mn exactly once. The weights of the vertices of  $mC_n$  under the labeling of f are given below.

$$\begin{split} w(x_{i,j}) &= \begin{cases} f(x_{i,j}x_{i,j+1}) + f(x_{i,j-1}x_{i,j}) & \text{for } i = 1, 2, ..., m \text{ and } j = 1, 2, ..., n-1, \\ f(x_{i,n-1}x_{i,n}) + f(x_{i,n}x_{i,1}) & \text{for } i = 1, 2, ..., m \text{ and } j = n, \end{cases} \\ w(x_{i,1}) &= \begin{cases} \frac{mn+2m+i+2}{2} & \text{for } i = 1, 3, ..., m, \\ \frac{mn+3m+i+2}{2} & \text{for } i = 2, 4, ..., m-1, \end{cases} \\ \{w(x_{i,1})/i = 1, 2, ..., m\} = \{\frac{mn+3}{2} + m, \frac{mn+3}{2} + m+1, ..., \frac{mn+3}{2} + 2m-1\}, \\ w(x_{i,n}) &= \begin{cases} \frac{mn+m+i+2}{2} & \text{for } i = 1, 3, ..., m, \\ \frac{mn+m+i+2}{2} & \text{for } i = 1, 3, ..., m, \end{cases} \\ w(x_{i,n}) &= \begin{cases} \frac{mn+m+i+2}{2} & \text{for } i = 1, 3, ..., m, \\ \frac{mn+m+i+2}{2} & \text{for } i = 2, 4, ..., m-1, \end{cases} \end{split}$$

On (a,d)-antimagic labelings of  $H_n$ ,  $FL_n$  and  $mC_n$ R.Ramalakshmi and KM. Kathiresan

$$\{w(x_{i,n})/i = 1, 2, ..., m\} = \{\frac{mn+3}{2}, \frac{mn+3}{2} + 1, ..., \frac{mn+3}{2} + m - 1, \}$$
 and

$$\{w(x_{i,j})/i = 1, 2, ..., m \text{ and } j = 2, 3, ..., n-1 \}$$
  
=  $\{\frac{mn+3}{2} + 2m, \frac{mn+3}{2} + 2m + 1, ..., \frac{mn+3}{2} + mn - 1 \}.$ 

Each vertex of  $m\tilde{C}_n$  receives exactly one weight from  $\left\{\frac{mn+3}{2}, \frac{mn+3}{2}+1, ..., \frac{mn+3}{2}+mn-1\right\}$ . Hence for both  $m \ge 1$  and  $n \ge 3$  odd,  $mC_n$  is  $\left(\frac{mn+3}{2}, 1\right)$ -antimagic.



Figure 1.  $H_4$  is (30, 1)-antimagic

#### 3. Open Problems and Conjectures

#### **Problems:**

- Determine whether  $FL_n$  is  $(\frac{5n-1}{2}, 2)$ -antimagic or not for n is odd and  $n \ge 5$ . Determine whether  $H_n$  is (3n + 3, 3)-antimagic or not for  $n \ge 3$ .

From our experience on this labeling, we propose the following conjectures.

#### **Conjectures**:

- For n is even and n ≥ 6, FL<sub>n</sub> is not (<sup>7n-2</sup>/<sub>2</sub>, 1)-antimagic.
  For n is even and n ≥ 4, FL<sub>n</sub> is not (<sup>3n</sup>/<sub>2</sub>, 3)-antimagic.



Figure 2.  $F_3$  is (7, 2)-antimagic and  $F_4$  is (13, 1)-antimagic



Figure 3.  $3C_5$  is (9, 1)-antimagic

### Acknowledgement

We thank anonymous reviewer for the valuable comments on an earlier version of the manuscript.

## References

- M.Baca, Antimagic labelings of antiprisms, J. Comb. Math. Comb. Comput. 35 (2000), 117– 127.
- [2] M.Baca and I.Hollander, On (a, d)-antimagic prisms, Ars. Combin. 48 (1998), 297–306.
- [3] M.Baca and M.Miller, Antimagic valuations of generalized Peterson graphs, *Australas. J. Combin.* **22** (2000), 135–139.
- [4] M.Baca and M.Miller, Super Edge-Antimagic Graphs : A Wealth of Problems and Some Solutions, Universal Publishers, 2008.
- [5] R.Bodendiek and G.Walther, On (a, d)-antimagic parachutes, Ars. Combin. 42 (1996), 129–149.
- [6] N.Hartsfield and G.Ringel, Pearls in Graph Theory, Academic Press, Botson-san diego-New York, Londan, 1990.
- [7] KM.Kathiresan and K.Paramasivam, Super magic strength of some new classes of graphs, *ANJAC J.Sci.* **1** (2)(2002), 5–10.