
www.ijc.or.id

Indonesian Journal of Combinatorics 1 (2) (2017), 64–77

Zagreb indices of block-edge transformation
graphs and their complements
Bommanahal Basavanagouda, Shreekant Patila

aDepartment of Mathematics, Karnatak University, Dharwad - 580 003, Karnataka, India

b.basavanagoud@gmail.com, shreekantpatil949@gmail.com

Abstract
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1. Introduction

Chemical graph theory is a branch of mathematics which combines graph theory and chem-
istry. Graph theory is used to model molecules mathematically in order to gain insight into the
physical properties of these chemical compounds. The basic idea of chemical graph theory is that
physico-chemical properties of molecules can be studied by using the information encoded in their
corresponding chemical graphs.

In the chemical literature, there have been a few earlier attempts to shift from ordinary chemical
graph to their transforms. The line graphs and the iterated line graphs were used in [16, 17, 19, 27].
Attempts to use graph complements were recently reported [25].

A graph invariant is any function on a graph that does not depend on a labeling of its vertices.
Such quantities are called topological indices. Zagreb indices belongs among the best investigated
topological indices, but their properties and chemical applications were always studied for case
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of ordinary chemical graphs [7, 12, 13, 15, 24]. Recently, some authors focused their attention
to the Zagreb indices (coindices) of certain transformation graphs [2, 4, 5, 14, 21]. The present
work is the continuation of research along the same lines, and is concerned with additional types
of transformation graphs.

Let G = (V,E) be a simple (molecular) graph. The number of vertices and edges of G are
denoted by n and m respectively. As usual n is said to be order and m the size of G. A graph
of order n and size m will be, for short, referred to as an (n,m)-graph. The degree of a vertex
v ∈ V (G) is the number of vertices adjacent to v in G. It will be denoted by dG(v). If u and v are
two adjacent vertices of G, then the edge connecting them will be denoted by uv. The degree of an
edge e = uv inG, denoted by dG(e), is defined by dG(e) = dG(u)+dG(v)−2. The complement of
the graph G, denoted by G, is the graph with vertex set V (G), in which two vertices are adjacent
if and only if they are not adjacent in G. The line graph L(G) of G is the graph whose vertex
set is E(G) in which two vertices are adjacent if and only if they are adjacent in G. The jump
graph J(G) of G is the graph whose vertex set is E(G) in which two vertices are adjacent if and
only if they are not adjacent in G [6]. A block of a graph is connected nontrivial graph having no
cutvertices. For terminology not defined here we refer the reader to [20].

In this paper, we are concerned with two degree-based invariants, called first Zagreb index M1

and second Zagreb index M2. These are defined as

M1(G) =
∑

v∈V (G)

dG(v)2 and M2(G) =
∑

uv∈E(G)

dG(u)dG(v)

respectively. Their mathematical theory is nowadays well elaborated. For details, see the papers
[7, 14, 15, 24]. For historical data on the Zagreb indices see [13]. For surveys on degree-based
topological indices see [10, 12].
The first Zagreb index can be written also as [8, 9]

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)].

Noticing that contribution of nonadjacent vertex pairs should be taken into account when com-
puting the weighted Wiener polynomials of certain composite graphs (see [8]) defined first Zagreb
coindex and second Zagreb coindex as

M1(G) =
∑

uv 6∈E(G)

[dG(u) + dG(v)] and M2(G) =
∑

uv 6∈E(G)

dG(u)dG(v)

respectively.
The vertex-degree-based graph invariant

F (G) =
∑

v∈V (G)

dG(v)3 =
∑

uv∈E(G)

[dG(u)2 + dG(v)2]

was encountered in [18]. Recently there has been some interest to F , called “forgotten topological
index”[11].

Milićević et al. [23] reformulated the Zagreb indices in terms of edge-degrees instead of vertex-
degrees. The first and second reformulated Zagreb indices are defined, respectively, as
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EM1(G) =
∑

e∈E(G)

dG(e)2 =
∑

e∼f∈E(G)

[dG(e) + dG(f)] and EM2(G) =
∑

e∼f∈E(G)

dG(e)dG(f).

In [22], Hosamani and Trinajstić are recently defined the first and second reformulated Zagreb
coindices, respectively, as

EM1(G) =
∑

e�f∈E(G)

[dG(e) + dG(f)] and EM2(G) =
∑

e�f∈E(G)

dG(e)dG(f),

where e ∼ f (e � f) means that the edges e and f are adjacent (not adjacent) in G.

The following theorems are useful for proving our results.

Theorem 1.1. [14, 26] For any graph G of order n and size m,

M1(G) = M1(G) + n(n− 1)2 − 4m(n− 1).

Theorem 1.2. [1, 14] Let G be any graph of order n and size m. Then

M1(G) +M1(G) = 2m(n− 1).

Theorem 1.3. [1, 14] Let G be a simple graph. Then

M1(G) = M1(G).

Theorem 1.4. [14] Let G be a graph of order n and size m. Then

M2(G) =
1

2
n(n− 1)3 − 3m(n− 1)2 + 2m2 + (

2n− 3

2
)M1(G)−M2(G)

M2(G) = 2m2 − 1

2
M1(G)−M2(G)

M2(G) = m(n− 1)2 − (n− 1)M1(G) +M2(G).

2. Block-edge transformation graphs Gab

Let G = (V,E) be a graph with block set U(G) ={Bi; Bi is a block of G, 1 ≤ i ≤ r}. If a
block B ∈ U(G) with the edge set {e1, e2, ..., es; s ≥ 1}, then we say that the edge ei and block B
are incident with each other, where 1 ≤ i ≤ s. In [3], we introduced the block-edge transformation
graphs Gab and defined as follows:
Definition: Let a, b be two variables taking values + or −. The block-edge transformation graph
Gab is a graph whose vertex set is E(G) ∪ U(G), and two vertices x and y of Gab are joined by an
edge if and only if one of the following holds:

(i) x, y ∈ E(G). x and y are adjacent in G if a = +; x and y are not adjacent in G if a = −.

(ii) x ∈ E(G), y ∈ U(G). x and y are incident with each other in G if b = +; x and y are not
incident with each other in G if b = −.
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Thus, we obtain four kinds of block-edge transformation graphs G++, G+−, G−+ and G−−.
The degree of a block B in G, denoted by dG(B), is the number of edges incident with B in G. We

denote sum of squares of the degrees of the blocks of G by ξ(G), that is ξ(G) =
r∑

i=1

dG(Bi)
2. The

vertex e′(B′) of Gab corresponding to edge e (resp., block B) of G and is referred as edge (resp.,
block)-vertex. In Figure 1 self-explanatory examples of these block-edge transformation graphs
are depicted.

Figure 1. Graph G and its block-edge transformation graphs Gab. The edge-vertices are indicated by circles and
block-vertices by squares in Gab.

3. Results

Before our discussion, we introduce the following propositions, which are useful to our main
results.

Proposition 3.1. Let G be an (n,m)-graph with r blocks. Then the degree of edge-vertex e′

(e = uv in G) and block-vertex B′ in Gab are
(i) dG++(e′) = dG(u) + dG(v)− 1 and dG++(B′) = dG(B).
(ii) dG+−(e′) = dG(u) + dG(v) + r − 3 and dG+−(B′) = m− dG(B).
(iii) dG−+(e′) = m+ 2− dG(u)− dG(v) and dG−+(B′) = dG(B).
(iv) dG−−(e′) = m+ r − dG(u)− dG(v) and dG−−(B′) = m− dG(B).

67



www.ijc.or.id

Zagreb indices of block-edge transformation graphs ... | B. Basavanagoud and S. Patil

Proof. (i) dG++(e′) = dG(e) + 1 = dG(u) + dG(v)− 1 and dG++(B′) = Number of edges incident
with block B in G = dG(B).
(ii) dG+−(e′) = dG(e) + r − 1 = dG(u) + dG(v) + r − 3 and dG+−(B′) = Number of edges not
incident with block B in G = m− dG(B).
(iii) dG−+(e′) = m− 1− dG(e) + 1 = m+ 2− dG(u)− dG(v) and dG−+(B′) = Number of edges
incident with block B in G = dG(B).
(iv) dG−−(e′) = m − 1 − dG(e) + r − 1 = m + r − dG(u) − dG(v) and dG−−(B′) = Number of
edges not incident with block B in G = m− dG(B).

Proposition 3.2. Let G be an (n,m)-graph with r blocks. Then the order of Gab is m+ r.
(i) The size of G++ = 1

2
M1(G).

(ii) The size of G+− = 1
2
M1(G) +m(r − 2).

(iii) The size of G−+ = m(m+3)
2
− 1

2
M1(G).

(iv) The size of G−− = m(m+2r−1)
2

− 1
2
M1(G).

Proof. Since L(G) and J(G) are induced subgraphs of G+b and G−b respectively. The number of
edges in L(G) [20] is −m+ 1

2

∑
v∈V (G) dG(u)2 = −m+ 1

2
M1(G), therefore the number of edges

in J(G) is m(m−1)
2
− size of L(G)= m(m−1)

2
+m− 1

2
M1(G) = m(m+1)

2
− 1

2
M1(G). Hence,

(i) The size of G++ = −m+ 1
2
M1(G) +m = 1

2
M1(G).

(ii) The size of G+− = −m+ 1
2
M1(G) +mr −m = 1

2
M1(G) +m(r − 2).

(iii) The size of G−+ = m(m+1)
2
− 1

2
M1(G) +m = m(m+3)

2
− 1

2
M1(G).

(iv) The size of G−− = m(m+1)
2
− 1

2
M1(G) +mr −m = m(m+2r−1)

2
− 1

2
M1(G).

Theorem 3.1. Let G be an (n,m)-graph with r blocks. Then

M1(G
++) = 2M2(G)− 2M1(G) + ξ(G) + F (G) +m.

Proof. By definition of the first Zagreb index, we have

M1(G
++) =

∑
x∈V (G++)

dG++(x)2

=
∑

e′∈V (G++)∩E(G)

dG++(e′)2 +
∑

B′∈V (G++)∩U(G)

dG++(B′)2.

From Proposition 3.1, we have

M1(G
++) =

∑
uv∈E(G)

[dG(u) + dG(v)− 1]2 +
∑

B∈U(G)

dG(B)2

=
∑

uv∈E(G)

[dG(u) + dG(v)]2 +
∑

uv∈E(G)

1− 2

 ∑
uv∈E(G)

[dG(u) + dG(v)]

+ ξ(G)
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=
∑

uv∈E(G)

[dG(u)2 + dG(v)2] + 2

 ∑
uv∈E(G)

[dG(u)dG(v)]

+
∑

uv∈E(G)

1

−2

 ∑
uv∈E(G)

[dG(u) + dG(v)]

+ ξ(G)

= F (G) + 2M2(G) +m− 2M1(G) + ξ(G).

Corollary 3.1. Let G be an (n,m)-graph with r blocks. Then

M1(G++) = 2M2(G)− 2(m+ r)M1(G) + ξ(G) + F (G) + (m+ r)(m+ r − 1)2 +m. (1)

Proof. From Theorem 1.1, M1(G++) = M1(G
++) +n1(n1− 1)2− 4m1(n1− 1), where n1 and m1

are number of vertices and edges in G++ respectively. Eq. (1) follows now from Proposition 3.2
and Theorem 3.1.

Corollary 3.2. Let G be an (n,m)-graph with r blocks. Then

M1(G
++) = (m+ r + 1)M1(G)− 2M2(G)− ξ(G)− F (G)−m. (2)

Proof. From Theorem 1.2, M1(G
++) = 2m1(n1 − 1) −M1(G

++), where n1 and m1 are number
of vertices and edges in G++ respectively. Eq. (2) follows now from Proposition 3.2 and Theorem
3.1.

Corollary 3.3. Let G be an (n,m)-graph with r blocks. Then

M1(G++) = (m+ r + 1)M1(G)− 2M2(G)− ξ(G)− F (G)−m.

Proof. Apply Theorem 1.3 and Corollary 3.2.

Theorem 3.2. Let G be an (n,m)-graph with r blocks. Then

M1(G
+−) = 2M2(G) + 2(r − 3)M1(G) + ξ(G) + F (G) +m2(r − 2) +m(r − 3)2.

Proof. Using the definition of the first Zagreb index, we have

M1(G
+−) =

∑
x∈V (G+−)

dG+−(x)2

=
∑

e′∈V (G+−)∩E(G)

dG+−(e′)2 +
∑

B′∈V (G+−)∩U(G)

dG+−(B′)2.
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From Proposition 3.1, we have

M1(G
+−) =

∑
uv∈E(G)

[dG(u) + dG(v) + r − 3]2 +
∑

B∈U(G)

(m− dG(B))2

=
∑

uv∈E(G)

[dG(u) + dG(v)]2 +
∑

uv∈E(G)

(r − 3)2 +
∑

uv∈E(G)

[2(r − 3)(dG(u) + dG(v))]

+
∑

B∈U(G)

m2 +
∑

B∈U(G)

dG(B)2 −
∑

B∈U(G)

2mdG(B)

= 2M2(G) + F (G) +m(r − 3)2 + 2(r − 3)M1(G) + rm2 + ξ(G)− 2m2.

Corollary 3.4. Let G be an (n,m)-graph with r blocks. Then

M1(G+−) = 2M2(G)− 2(m+ 2)M1(G) + ξ(G) + F (G) +m2(r − 2) +m(r − 3)2

+(m+ r − 1)[(m+ r)(m+ r − 1)− 4m(r − 2)]. (3)

Proof. From Theorem 1.1, M1(G+−) = M1(G
+−) +n1(n1− 1)2− 4m1(n1− 1), where n1 and m1

are number of vertices and edges in G+− respectively. Eq. (3) follows now from Proposition 3.2
and Theorem 3.2.

Corollary 3.5. Let G be an (n,m)-graph with r blocks. Then

M1(G
+−) = (m− r + 5)M1(G)− 2M2(G)− ξ(G)− F (G)−m2(r − 2)−m(r − 3)2

+2m(r − 2)(m+ r − 1). (4)

Proof. From Theorem 1.2, M1(G
+−) = 2m1(n1 − 1) −M1(G

+−), where n1 and m1 are number
of vertices and edges in G+− respectively. Eq. (4) follows now from Proposition 3.2 and Theorem
3.2.

Corollary 3.6. Let G be an (n,m)-graph with r blocks. Then

M1(G+−) = (m− r + 5)M1(G)− 2M2(G)− ξ(G)− F (G)−m2(r − 2)−m(r − 3)2

+2m(r − 2)(m+ r − 1).

Proof. Apply Theorem 1.3 and Corollary 3.5.

Theorem 3.3. Let G be an (n,m)-graph with r blocks. Then

M1(G
−+) = 2M2(G)− 2(m+ 2)M1(G) + ξ(G) + F (G) +m(m+ 2)2.

Proof. By definition of the first Zagreb index, we have

M1(G
−+) =

∑
x∈V (G−+)

dG−+(x)2

=
∑

e′∈V (G−+)∩E(G)

dG−+(e′)2 +
∑

B′∈V (G−+)∩U(G)

dG−+(B′)2.
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From Proposition 3.1, we have

M1(G
−+) =

∑
uv∈E(G)

[m+ 2− dG(u)− dG(v)]2 +
∑

B∈U(G)

dG(B)2

=
∑

uv∈E(G)

[dG(u) + dG(v)]2 +
∑

uv∈E(G)

(m+ 2)2 −
∑

uv∈E(G)

[2(m+ 2)(dG(u) + dG(v))]

+ξ(G)

= 2M2(G) + F (G) +m(m+ 2)2 − 2(m+ 2)M1(G) + ξ(G).

Corollary 3.7. Let G be an (n,m)-graph with r blocks. Then

M1(G−+) = 2(r − 3)M1(G) + 2M2(G) + ξ(G) + F (G) +m(m+ 2)2

+(m+ r − 1)[(m+ r)(m+ r − 1)− 2m(m+ 3)]. (5)

Proof. From Theorem 1.1, M1(G−+) = M1(G
−+) +n1(n1− 1)2− 4m1(n1− 1), where n1 and m1

are number of vertices and edges in G−+ respectively. Eq. (5) follows now from Proposition 3.2
and Theorem 3.3.

Corollary 3.8. Let G be an (n,m)-graph with r blocks. Then

M1(G
−+) = (m−r+5)M1(G)−2M2(G)−ξ(G)−F (G)−m(m+2)2+m(m+3)(m+r−1). (6)

Proof. From Theorem 1.2, M1(G
−+) = 2m1(n1 − 1) −M1(G

−+), where n1 and m1 are number
of vertices and edges in G−+ respectively. Eq. (6) follows now from Proposition 3.2 and Theorem
3.3.

Corollary 3.9. Let G be an (n,m)-graph with r blocks. Then

M1(G−+) = (m− r+5)M1(G)−2M2(G)− ξ(G)−F (G)−m(m+2)2 +m(m+3)(m+ r−1).

Proof. Apply Theorem 1.3 and Corollary 3.8.

Theorem 3.4. Let G be an (n,m)-graph with r blocks. Then

M1(G
−−) = 2M2(G)− 2(m+ r)M1(G) + ξ(G) + F (G) +m2(r − 2) +m(m+ r)2.

Proof. Using the definition of the first Zagreb index, we have

M1(G
−−) =

∑
x∈V (G−−)

dG−−(x)2

=
∑

e′∈V (G−−)∩E(G)

dG−−(e′)2 +
∑

B′∈V (G−−)∩U(G)

dG−−(B′)2.
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From Proposition 3.1, we have

M1(G
−−) =

∑
uv∈E(G)

[m+ r − dG(u)− dG(v)]2 +
∑

B∈U(G)

(m− dG(B))2

=
∑

uv∈E(G)

[dG(u) + dG(v)]2 +
∑

uv∈E(G)

(m+ r)2 −
∑

uv∈E(G)

[2(m+ r)(dG(u) + dG(v))]

+
∑

B∈U(G)

m2 +
∑

B∈U(G)

dG(B)2 −
∑

B∈U(G)

2mdG(B)

= 2M2(G) + F (G) +m(m+ r)2 − 2(m+ r)M1(G) + rm2 + ξ(G) + 2m2.

Corollary 3.10. Let G be an (n,m)-graph with r blocks. Then

M1(G−−) = 2M2(G)− 2M1(G) + ξ(G) + F (G) +m2(r − 2) +m(m+ r)2

+(m+ r − 1)[(m+ r)(m+ r − 1)− 2m(m+ 2r − 1)]. (7)

Proof. From Theorem 1.1, M1(G−−) = M1(G
−−) +n1(n1− 1)2− 4m1(n1− 1), where n1 and m1

are number of vertices and edges in G−− respectively. Eq. (7) follows now from Proposition 3.2
and Theorem 3.4.

Corollary 3.11. Let G be an (n,m)-graph with r blocks. Then

M1(G
−−) = (m+r+1)M1(G)−2M2(G)−ξ(G)−F (G)−m2(r−2)−m(m+r)2+m(m+2r−1)(m+r−1).

(8)

Proof. From Theorem 1.2, M1(G
−−) = 2m1(n1 − 1) −M1(G

−−), where n1 and m1 are number
of vertices and edges in G−− respectively. Eq. (8) follows now from Proposition 3.2 and Theorem
3.4.

Corollary 3.12. Let G be an (n,m)-graph with r blocks. Then

M1(G−−) = (m+ r + 1)M1(G)− 2M2(G)− ξ(G)− F (G)−m2(r − 2)−m(m+ r)2

+m(m+ 2r − 1)(m+ r − 1).

Proof. Apply Theorem 1.3 and Corollary 3.11.

From Theorem 1.4, it is clear that if M1(G
ab) and M2(G

ab) are known then M2(Gab), M2(G
ab)

and M2(Gab) are known, what really needs to be calculated are expressions for M2(G
ab).

In order to determine the expression for second Zagreb index of Gab, we need to introduce two
auxiliary degree-based indices.

Let G be a (molecular) graph. Denote an edge e (= uv in G) is incident (not incident) with a
block B by e ∼ B (e � B). Then we define two auxiliary indices as follows:

MB(G) =
∑
e∼B

[dG(u) + dG(v)]dG(B) and MB(G) =
∑
e�B

[dG(u) + dG(v)]dG(B).

72



www.ijc.or.id

Zagreb indices of block-edge transformation graphs ... | B. Basavanagoud and S. Patil

Theorem 3.5. Let G be an (n,m)-graph with r blocks. Then
M2(G

++) = EM1(G) + EM2(G) + 1
2
M1(G) +MB(G)−m− ξ(G).

Proof. By definition of the second Zagreb index, we have

M2(G
++) =

∑
xy∈E(G++)

dG++(x)dG++(y)

=
∑

e′f ′∈E(G++)∩E(L(G))

dG++(e′)dG++(f ′) +
∑

e′B′∈E(G++)\E(L(G))

dG++(e′)dG++(B′).

From Proposition 3.1, we have

M2(G
++) =

∑
e=uv∼f=vw

[dG(u) + dG(v)− 1][dG(v) + dG(w)− 1] +
∑
e∼B

[dG(u) + dG(v)− 1]dG(B)

=
∑
e∼f

[dG(e) + 1][dG(f) + 1] +
∑
e∼B

[(dG(u) + dG(v))dG(B)− dG(B)]

=
∑
e∼f

[dG(e) + dG(f)] +
∑
e∼f

[dG(e)dG(f)] +
∑
e∼f

1 +
∑
e∼B

[(dG(u) + dG(v))dG(B)]−
∑
e∼B

dG(B).

∑
e∼B

dG(B) =
∑

B∈U(G)

dG(B)2 = ξ(G) as the quantity dG(B) appears dG(B) times. Hence,

M2(G
++) = EM1(G) + EM2(G)−m+

1

2
M1(G) +MB(G)− ξ(G).

Theorem 3.6. Let G be an (n,m)-graph with r blocks. Then

M2(G
+−) = (r − 1)EM1(G) + EM2(G) +

(r − 1)2

2
M1(G)−MB(G)−m(r − 1)2

+m2(r − 3)(r − 1) +m(r − 1)M1(G)− (r − 3)(m2 − ξ(G)).

Proof. Using the definition of the second Zagreb index, we have

M2(G
+−) =

∑
xy∈E(G+−)

dG+−(x)dG+−(y)

=
∑

e′f ′∈E(G+−)∩E(L(G))

dG+−(e′)dG+−(f ′) +
∑

e′B′∈E(G+−)\E(L(G))

dG+−(e′)dG+−(B′).

From Proposition 3.1, we have

M2(G
+−) =

∑
e=uv∼f=vw

[dG(u) + dG(v) + r − 3][dG(v) + dG(w) + r − 3]

+
∑
e�B

[dG(u) + dG(v) + r − 3][m− dG(B)]

=
∑
e∼f

[dG(e) + r − 1][dG(f) + r − 1]

+
∑
e�B

[m(dG(u) + dG(v))− (dG(u) + dG(v))dG(B) + (r − 3)m− (r − 3)dG(B)].
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∑
e�B

dG(B) =
∑

B∈U(G)

(m− dG(B))dG(B) = m2− ξ(G) as the quantity dG(B) appears m− dG(B)

times. Hence,

M2(G
+−) = (r − 1)EM1(G) + EM2(G) + (r − 1)2

[
−m+

1

2
M1(G)

]
+m(r − 1)M1(G)−MB(G) +m2(r − 3)(r − 1)− (r − 3)(m2 − ξ(G)).

Theorem 3.7. Let G be an (n,m)-graph with r blocks. Then
M2(G

−+) = EM2(G)−mEM1(G)− m2

2
M1(G)−MB(G) + m3(m+1)

2
+ (m+ 2)ξ(G).

Proof. By definition of the second Zagreb index, we have

M2(G
−+) =

∑
xy∈E(G−+)

dG−+(x)dG−+(y)

=
∑

e′f ′∈E(G−+)∩E(J(G))

dG−+(e′)dG−+(f ′) +
∑

e′B′∈E(G−+)\E(J(G))

dG−+(e′)dG−+(B′).

From Proposition 3.1, we have

M2(G
−+) =

∑
e=uv�f=wz

[m+ 2− dG(u)− dG(v)][m+ 2− dG(w)− dG(z)]

+
∑
e∼B

[m+ 2− dG(u)− dG(v)]dG(B)

=
∑
e�f

[m− dG(e)][m− dG(f)] +
∑
e∼B

[(m+ 2)dG(B)− (dG(u) + dG(v))dG(B)]

= EM2(G)−mEM1(G) +m2

[
m(m− 1)

2
+m− 1

2
M1(G)

]
+ (m+ 2)ξ(G)−MB(G).

Theorem 3.8. Let G be an (n,m)-graph with r blocks. Then

M2(G
−−) = EM2(G)− (m+ r − 2)EM1(G)− (m+ r − 2)2

2
M1(G) +MB(G)

+
m(m+ 1)(m+ r − 2)2

2
+m2(m+ r)(r − 1)−m(r − 1)M1(G)− (m+ r)(m2 − ξ(G)).

Proof. Using the definition of the second Zagreb index, we have

M2(G
−−) =

∑
xy∈E(G−−)

dG−−(x)dG−−(y)

=
∑

e′f ′∈E(G−−)∩E(J(G))

dG−−(e′)dG−−(f ′) +
∑

e′B′∈E(G−−)\E(J(G))

dG−−(e′)dG−−(B′).
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From Proposition 3.1, we have

M2(G
−−) =

∑
e=uv�f=wz

[m+ r − dG(u)− dG(v)][m+ r − dG(w)− dG(z)]

+
∑
e�B

[m+ r − dG(u)− dG(v)][m− dG(B)]

=
∑
e�f

[m+ r − 2− dG(e)][m+ r − 2− dG(f)]

+
∑
e�B

[(dG(u) + dG(v))dG(B)−m(dG(u) + dG(v)) +m(m+ r)− (m+ r)dG(B)]

= EM2(G)− (m+ r − 2)EM1(G) + (m+ r − 2)2
[
m(m− 1)

2
+m− 1

2
M1(G)

]
+MB(G)−m(r − 1)M1(G) +m2(m+ r)(r − 1)− (m+ r)(m2 − ξ(G)).
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