New families of star-supermagic graphs

Anak Agung Gede Ngurah

Department of Civil Engineering, Universitas Merdeka Malang
Jl. Taman Agung 1 Malang, Indonesia

aag.ngurah@unmer.ac.id

Abstract

A simple graph G admits a $K_{1,n}$-covering if every edge in $E(G)$ belongs to a subgraph of G isomorphic to $K_{1,n}$. The graph G is $K_{1,n}$-supermagic if there exists a bijection $f : V(G) \cup E(G) \rightarrow \{1, 2, 3, \ldots, |V(G) \cup E(G)|\}$ such that for every subgraph H' of G isomorphic to $K_{1,n}$, $\sum_{v \in V(H')} f(v) + \sum_{e \in E(H')} f(e)$ is a constant and $f(V(G)) = \{1, 2, 3, \ldots, |V(G)|\}$. In such a case, f is called a $K_{1,n}$-supermagic labeling of G. In this paper, we give a method how to construct $K_{1,n}$-supermagic graphs from the old ones.

Keywords: $K_{1,n}$-covering, $K_{1,n}$-supermagic labeling, $K_{1,n}$-supermagic graph

Mathematics Subject Classification: 05C78

DOI: 10.19184/ijc.2020.4.2.4

1. Introduction

In this paper, we consider finite and simple graphs G with the vertex and edge sets $V(G)$ and $E(G)$, respectively. The number of vertices (edges) in the graph G is called order (size) of G. Let H be a given graph. An edge-covering of G is a family of subgraphs H_1, \ldots, H_k such that each edge in $E(G)$ belongs to at least one of the subgraphs H_i, $1 \leq i \leq k$. Then it is said that G admits an (H_1, \ldots, H_k)-edgecovering. If every H_i, $1 \leq i \leq k$, is isomorphic to the graph H, then G admits an H-covering. Suppose G admits an H-covering. A total labeling $f : V(G) \cup E(G) \rightarrow \{1, 2, 3, \ldots, |V(G) \cup E(G)|\}$ is called an H-magic labeling of G if for every subgraph H' of G isomorphic to H, $\sum_{v \in V(H')} f(v) + \sum_{e \in E(H')} f(e) = c_f$ is a constant. The constant c_f is called magic constant of the labeling f. An H-magic labeling f is called an

Received: 27 December 2019, Revised: 13 December 2020, Accepted: 17 December 2020.
H-supermagic labeling if $f(V(G)) = \{1, 2, \ldots, |V(G)|\}$. A graph that admits H-(super)magic labelings is called H-(super)magic. In this paper, we consider such a labeling when H is a star $K_{1,n}$.

The H-(super)magic labeling was first introduced and studied by Gutiérrez and Lladó [3] in 2005 where H-supermagic labelings for stars, complete bipartite graphs, paths and cycles are considered. In [7], Lladó and Moragas studied C_n-supermagic labeling of some graphs. They proved that the wheel W_n, the windmill $W(r, k)$, and the prism $C_n \times P_2$ are C_h-supermagic for some h. Cycles-supermagic labeling of chain graphs kC_n-path, triangle ladders TL_n, grids $P_m \times P_n$, for $n = 2, 3, 4, 5$, fans F_n, and books B_n can be found in [8]. The complete results on these labelings can be found in [2].

For $H \cong P_2$, an H-supermagic graph is also called a super edge-magic graph. The notion of a super edge-magic graph was introduced by Enomoto at al [1] as a particular type of edge-magic graph given by Rosa [5]. For further information about (super) edge-magic graphs, see [2]. The H-magic labeling is related to a face-magic labeling of a plane graph introduced by Lih [6]. A total labeling f of a plane graph is said to be face-magic if for every positive integer s, all s-sided faces have the same weight. The weight of a face under the labeling f is the sum of labels carried by the edges and vertices surrounding it. Lih [6] allows different weights for different s. When a plane graph G contains only n-sided faces then face-magic labeling of G is also C_n-magic labeling. Other results about this labeling can be found in, for instance, [2].

In this paper, we give a method how to construct star-supermagic graphs from the old ones. Based on this, we have new families of star-supermagic graphs.

2. The Results

In this section, we propose a method for constructing new star-supermagic graphs from certain star-supermagic graphs. To do this, we need the following notations. The sum of all vertex and edge labels on H (under a labeling f) is denoted by $\sum f(H)$. For any two integers $n < m$, the set of all consecutive integers from n to m is denoted by $[n, m]$. For any set $X \subseteq \mathbb{N}$, the set of natural numbers, we write $\Sigma X = \sum_{x \in X} x$. For any integer k, $X + k = \{x + k : x \in X\}$. Thus $k + [n, m]$ is the set of consecutive integers from $k + n$ to $k + m$. It is easy to check that $\Sigma(X + k) = k|X| + \Sigma X$. Furthermore, we also need the concept of a k-balanced set. $\mathbb{P} = \{X_1, X_2, \ldots, X_k\}$ is said to be an equipartition of a set of integers X if X_1, X_2, \ldots, X_k are non-empty disjoint subsets of X whose union is X and, for $i \in [1, k]$, $|X_i| = \frac{|X|}{k}$. The set X is said to be k-balanced if there exists an equipartition $\mathbb{P} = \{X_1, X_2, \ldots, X_k\}$ of X with the property that $\Sigma X_i = \frac{\Sigma X}{k}$, $i \in [1, k]$.

Lemma 2.1. For any positive integers k and m, the set $X = [1, 2km]$ is k-balanced.

Proof. For every $i \in [1, k]$, define $A_i = [(i - 1)m + 1, im]$ and $B_i = km + A_{k+1-i}$. For every $i \in [1, k]$, let $C_i = A_i \cup B_i$. It can be checked that for $i \neq j$, $C_i \cap C_j = \emptyset$, $\bigcup_{i=1}^{k} C_i = X$, and for $i \in [1, k]$, $|C_i| = 2m$. So, $\mathbb{P} = \{C_1, C_2, \ldots, C_k\}$ is an equipartition of X. Furthermore, for every $i \in [1, k]$, it can be checked that $\sum C_i = m(2km + 1)$. Thus, X is k-balanced.

For example, let $k = m = 3$, and thus $X = [1, 18]$. Then $A_1 = \{1, 2, 3\}$, $A_2 = \{4, 5, 6\}$, and $A_3 = \{7, 8, 9\}$. $B_1 = \{16, 17, 18\}$, $B_2 = \{13, 14, 15\}$, and $B_3 = \{10, 11, 12\}$. The
equipartition subsets of X are $C_1 = \{1, 2, 3, 16, 17, 18\}$, $C_2 = \{4, 5, 6, 13, 14, 15\}$, and $C_3 = \{7, 8, 9, 10, 11, 12\}$. Here, $\sum C_1 = \sum C_2 = \sum C_3 = 57$.

Corollary 2.1. For any positive integers k, m, and p, the set $Y = [p + 1, 2km + p]$ is k-balanced.

Proof. An equipartition of Y is $\{D_1, D_2, \ldots, D_k\}$, where $D_i = p + C_i$, $i \in [1, k]$, and C_i is defined as in the proof of Lemma 2.1. \hfill \square

Theorem 2.1. Let G be a graph with of order p and size q edges and admits a $K_{1, \Delta(G)}$-covering, where $\Delta(G)$ is maximum degree of G. Let H be a graph formed from G by attaching $m \geq 1$ pendants to every vertex v of G whose degree $\text{deg}(v) = \Delta(G)$. If G is $K_{1, \Delta(G)}$-supermagic, then H is $K_{1, \Delta(G)+m}$-supermagic.

Proof. Let G be a $K_{1, \Delta(G)}$-supermagic graph with a $K_{1, \Delta(G)}$-supermagic labeling f. Let v_1, v_2, \ldots, v_k be vertices of G such that $\text{deg}(v_i) = \Delta(G)$, $i \in [1, k]$. Then, for every $i \in [1, k]$ we have

$$c_f = f(v_i) + \sum_{u \in N(v_i)} f(u) + \sum_{u \in N(v_i)} f(uv_i),$$

where $N(v_i) = \{u : uv_i \in E(G)\}$.

Next, define H as a graph with

$$V(H) = V(G) \cup \{v_i^j : i \in [1, k], j \in [1, m]\},$$

$$E(H) = E(G) \cup \{v_i^jv_l^j : i \in [1, k], j \in [1, m]\}.$$

Thus, H is a graph of order $p + km$ and size $q + km$. Additionally, H is a graph with maximum degree $\Delta(G) + m$. Since G admits a $K_{1, \Delta(G)}$-covering and based on how H is constructed, then H admits a $K_{1, \Delta(G)+m}$-covering.

Let $U_1 = [1, p]$, $U_2 = [p + 1, 2km + p]$, and $U_3 = [2km + p + 1, 2km + p + q]$. So, U_1, U_2, U_3 is a partition of $[1, 2km + p + q]$. By corollary 1, the set $U_2 = [p + 1, 2km + p]$ is k-balanced. For every $i \in [1, k]$, let D_i be balanced subsets of U_2, where D_i is defined as in the proof of Lemma 2.

Next, define a total labeling

$$g : V(H) \cup E(H) \rightarrow [1, p + q + 2km]$$

as follows.

$$g(x) = \begin{cases} f(x), & \text{for } x \in V(G), \\ 2km + f(x), & \text{for } x \in E(G). \end{cases}$$

Under the labeling g, $g(V(G)) = [1, p]$ and $g(E(G)) = [2km + p + 1, 2km + p + q]$. Label the remaining $2km$ pendant vertices and $2km$ pendant edges of H, as follows. For $i \in [1, k]$, label $\{v_i^j : j \in [1, m]\} \cup \{v_i^jv_l^j : j \in [1, m]\}$ with the elements of D_i such that the label of v_i^j less than the label of $v_i^jv_l^j$. Thus, under the labeling g, $g(V(H)) = [1, p + km]$ and $g(E(H)) = [km + p + 1, p + q + 2km].$
Next, we show that g is a $K_{1,\Delta(G)+m}$-supermagic labeling of H. For every $i \in [1,k]$,
\[
c_g = g(v_i) + \sum_{u \in N(v_i)} g(u) + \sum_{u \in N(v_i)} g(uv_i) \\
= g(v_i) + \sum_{u \in N(v_i) \cap V(G)} g(u) + \sum_{u \in N(v_i) \cap V(G)} g(uv_i) \\
+ \sum_{j=1}^{m} g(v_i^j) + \sum_{j=1}^{m} g(v_i^j) \\
= f(v_i) + \sum_{u \in N(v_i)} f(u) + \sum_{u \in N(v_i)} [2km + f(uv_i)] \\
+ \sum_i D_i \\
= c_f + (2k\Delta(G) + 2p + 1)m + 2km^2.
\]

Hence, g is a $K_{1,\Delta(G)+m}$-supermagic labeling of H. So, H is a $K_{1,\Delta(G)+m}$-supermagic graph. \hfill \square

Illustrations of Theorem 2.1 for case $\Delta(G) = 2$, $p = k = 5$, and $m = 1$ is given in Figure 1, and for case $\Delta(G) = 2$, $p = 7$, $k = 5$, and $m = 2$ is given in Figure 2.

![Figure 1](image1.png)

Figure 1. (a) The $K_{1,2}$-supermagic labeling of C_5 with the magic constant 25. (b) The $K_{1,3}$-supermagic labeling of the graph which is obtained by attaching a pendant to every vertex of C_5 with the magic constant 66.

![Figure 2](image2.png)

Figure 2. (a). A $K_{1,2}$-supermagic labeling of P_7 with the magic constant 34. (b) A $K_{1,4}$-supermagic labeling of a caterpillar which is formed by attaching two pendants to every vertices of P_7 except the pendants vertices with the magic constant 144.

In [3], Gutiérrez and Lladó proved the following results. The cycle C_n is P_t-supermagic for any $t \in [2, n - 1]$ such that $gcd(n, t(t - 1)) = 1$, and P_n is P_h-supermagic for every $h \in [2, n]$.

109
Proof.

Define a vertex labeling \(f_1 : V(G_k) \rightarrow [1, 3k + 5] \) as follows.

\[
\begin{align*}
 f_1(u) &= \begin{cases}
 i, & \text{if } u = x_i, \ i \text{ is odd}, \\
 i, & \text{if } u = y_i, \ i \text{ is odd}, \\
 \frac{i}{3}(3k + 8 - i), & \text{if } u = x_i, \ i \text{ is even, } k \text{ is even}, \\
 \frac{i}{3}(4k + 9 - i), & \text{if } u = y_i, \ i \text{ is odd, } k \text{ is even}, \\
 \frac{i}{3}(4k + 10 - i), & \text{if } u = x_i, \ i \text{ is even, } k \text{ is odd}, \\
 \frac{i}{3}(3k + 8 - i), & \text{if } u = y_i, \ i \text{ is odd, } k \text{ is odd}, \\
 3k + 6 - i, & \text{if } u = c_i, \ i \in [1, k + 1].
 \end{cases}
\end{align*}
\]

In particular, they proved that the cycle \(C_n \) is \(P_3 \cong K_{1,2} \)-supermagic for any \(n > 3 \) such that \(\gcd(n, 6) = 1 \), and \(P_n \) is \(P_3 \)-supermagic for every \(n \geq 3 \). As a consequence of these results and Theorem 2.1, we have the following corollaries.

Corollary 2.2. For any \(n > 3 \) such that \(\gcd(n, 6) = 1 \), and \(m \geq 1 \), the corona product of \(C_n \) and \(mK_1 \), \(C_n \circ mK_1 \), is a \(K_{1,m+2} \)-supermagic graph.

Corollary 2.3. For \(n \geq 3 \) and \(m \geq 1 \), the caterpillar formed by attaching \(m \) pendant edges to every vertex of degree two of the path \(P_n \) is a \(K_{1,m+2} \)-supermagic graph.

The open problem related to the \(K_{1,m+2} \)-supermagic labeling of \(C_n \circ mK_1 \) is as follows.

Problem 1. For any \(n > 3 \) such that \(\gcd(n, 6) \neq 1 \), and \(m \geq 1 \), determine whether there is a \(K_{1,m+2} \)-supermagic labeling of \(C_n \circ mK_1 \).

In [4], Jeyanthi and Selvagopal proved the following results.

Theorem 2.2. [4] Let \(H_1, H_2, \ldots, H_n \) be \(n \) disjoint copies of star \(K_{1,n} \) and \(G_1 \) be the graph obtained by joining a new vertex to a pendant vertex of \(H_i \), \(i \in [1, n] \). Then \(G_1 \) is a \(K_{1,n} \)-supermagic graph.

Theorem 2.3. [4] Let \(H_1, H_2, \ldots, H_{n+1} \) be \(n + 1 \) disjoint copies of star \(K_{1,n} \) and \(G_2 \) be the graph obtained by joining a new vertex to the center vertex of \(H_i \), \(i \in [1, n + 1] \). Then \(G_2 \) is a \(K_{1,n+1} \)-supermagic graph.

Again, as a consequence of these results and Theorem 2.1, we have the following corollaries.

Corollary 2.4. For \(m \geq 1 \), the graphs \(G_1^* \) formed by attaching \(m \) pendant edges to every vertex of degree \(n \) of \(G_1 \) is a \(K_{1,n+m} \)-supermagic graph.

Corollary 2.5. For \(m \geq 1 \), the graphs \(G_2^* \) formed by attaching \(m \) pendant edges to every vertex of degree \(n + 1 \) of \(G_2 \) is a \(K_{1,n+m+1} \)-supermagic graph.

Next, we show the existence of a \(K_{1,n} \)-supermagic labeling of two classes of graphs for some integers \(n \). Let \(k \geq 1 \) be an integer. Let \(G_k \) be a graph with \(V(G_k) = \{x_i, y_i : i \in [1, k + 2]\} \cup \{c_i : i \in [1, k + 1]\} \) and \(E(G_k) = \{x_i c_i, y_i c_i : i \in [1, k + 1]\} \cup \{c_i x_{i+1}, c_i y_{i+1} : i \in [1, k + 1]\} \). Thus, \(G_k \) is a graph of order \(3k + 5 \) and size \(4k + 4 \), and it is obtained from a chain graph \(kC_4 \)-path by attaching two pendants to the vertices \(c_1 \) and \(c_{k+1} \), respectively.

Theorem 2.4. For every positive integer \(k \geq 1 \), the graph \(G_k \) is \(K_{1,4} \)-supermagic.

Proof. Define a vertex labeling \(f_1 : V(G_k) \rightarrow [1, 3k + 5] \) as follows.

\[
\begin{align*}
 f_1(u) &= \begin{cases}
 i, & \text{if } u = x_i, \ i \text{ is odd}, \\
 i, & \text{if } u = y_i, \ i \text{ is odd}, \\
 \frac{i}{3}(3k + 8 - i), & \text{if } u = x_i, \ i \text{ is even, } k \text{ is even}, \\
 \frac{i}{3}(4k + 9 - i), & \text{if } u = y_i, \ i \text{ is odd, } k \text{ is even}, \\
 \frac{i}{3}(4k + 10 - i), & \text{if } u = x_i, \ i \text{ is even, } k \text{ is odd}, \\
 \frac{i}{3}(3k + 8 - i), & \text{if } u = y_i, \ i \text{ is odd, } k \text{ is odd}, \\
 3k + 6 - i, & \text{if } u = c_i, \ i \in [1, k + 1].
 \end{cases}
\end{align*}
\]
Next, for every $i \in [1, k + 1]$, define an edge labeling $f_2 : E(G_k) \rightarrow [1, 4k + 4]$ as follows.

$$f_2(u) = \begin{cases}
2i - 1, & \text{if } u = x_ic_i, \\
2i, & \text{if } u = c_ix_{i+1}, \\
4k + 6 - 2i, & \text{if } u = y_ic_i, \\
4k + 5 - 2i, & \text{if } u = c_iy_{i+1}.
\end{cases}$$

For every $i \in [1, k+1]$, let $K_{1,4}^{(i)}$ be the sub-stars of G_k with vertex set $V(K_{1,4}^{(i)}) = \{c_ix_i, x_{i+1}, y_i, y_{i+1}\}$ and edge set $E(K_{1,4}^{(i)}) = \{c_ix_i, c_ix_{i+1}, c_iy_i, c_iy_{i+1}\}$. It can be checked that for every $i \in [1, k + 1]$,

$$f_1(K_{1,4}^{(i)}) = f_1(c_i) + f_1(x_i) + f_1(y_i) + f_1(x_{i+1}) + f_1(y_{i+1}) = \left\lfloor \frac{1}{2}(13k + 31) \right\rfloor$$

and

$$f_2(K_{1,4}^{(i)}) = f_2(c_ix_i) + f_2(c_iy_i) + f_2(c_ix_{i+1}) + f_2(c_iy_{i+1}) = 8k + 10.$$

Finally, define a total labeling $f_3 : V(G_k) \cup E(G_k) \rightarrow [1, 7k + 9]$ as follows.

$$f_3(u) = \begin{cases}
f_1(u), & \text{if } u \in V(G_k), \\
3k + 5 + f_2(u), & \text{if } u \in E(G_k).
\end{cases}$$

It is easy to verify that, for every $i \in [1, k + 1]$, $\sum f_3(K_{1,4}^{(i)}) = f_1(K_{1,4}^{(i)}) + 12k + 20 + f_2(K_{1,4}^{(i)}) = \left\lfloor \frac{1}{2}(53k + 91) \right\rfloor$.

As a direct consequence of this result and Theorem 2.1, we have the following corollary.

Corollary 2.6. For any integers $k \geq 1$ and $m \geq 1$, the graph formed by attaching m pendants to every vertex of degree four of the graph G_k is a $K_{1,m+4}$-supermagic graph.

Next, we consider of $K_{1,3}$-supermagic labelings of a ladder minus two edges. First, we define the ladder $L_n = P_n \times P_2$, $n \geq 3$, as a graph with vertex set $V(L_n) = \{x_i, y_i : i \in [1, n]\}$ and edge set $E(L_n) = \{x_ix_j, y_ix_j, y_jy_{j+1} : i, j \in [1, n - 1]\}$. For any integer $n \geq 3$, let $H_n = L_n - \{x_1y_1, x_ny_n\}$. Thus, H_n is a graph with $V(H_n) = V(L_n)$ and $E(H_n) = E(L_n) - \{x_1y_1, x_ny_n\}$. In the following theorem, we show that H_n is $K_{1,3}$-supermagic for every $n \geq 3$.

Theorem 2.5. For any integer $n \geq 3$, H_n is $K_{1,3}$-supermagic.

Proof. Define a vertex labeling $g_1 : V(H_n) \rightarrow [1, 2n]$ as follows.

Case $n \equiv 0, 1 \mod 4$.

$$g_1(u) = \begin{cases}
\left\lfloor \frac{1}{2}(3n + 3 - i) \right\rfloor, & \text{if } u = x_i, i \equiv 0 \mod 4, \\
\left\lfloor \frac{1}{2}(i + 1) \right\rfloor, & \text{if } u = x_i, i \equiv 1 \mod 4, \\
\left\lfloor \frac{1}{2}(4n + 2 - i) \right\rfloor, & \text{if } u = x_i, i \equiv 2 \mod 4, \\
\left\lfloor \frac{1}{2}(n + 2 + i) \right\rfloor, & \text{if } u = x_i, i \equiv 3 \mod 4, \\
\left\lfloor \frac{1}{2}(4n + 2 - i) \right\rfloor, & \text{if } u = y_i, i \equiv 0 \mod 4, \\
\left\lfloor \frac{1}{2}(n + 2 + i) \right\rfloor, & \text{if } u = y_i, i \equiv 1 \mod 4, \\
\left\lfloor \frac{1}{2}(3n + 3 - i) \right\rfloor, & \text{if } u = y_i, i \equiv 2 \mod 4, \\
\left\lfloor \frac{1}{2}(i + 1) \right\rfloor, & \text{if } u = y_i, i \equiv 3 \mod 4.
\end{cases}$$
Case \(n \equiv 2, 3 \mod 4 \).

\[
g_1(u) = \begin{cases}
\frac{1}{2}(4n + 2 - i), & \text{if } u = x_i, \ i \equiv 0 \mod 4, \\
\frac{1}{2}(i + 1), & \text{if } u = x_i, \ i \equiv 1 \mod 4, \\
\frac{1}{2}(3n + 3 - i), & \text{if } u = x_i, \ i \equiv 2 \mod 4, \\
\frac{1}{2}(n + 2 + i), & \text{if } u = x_i, \ i \equiv 3 \mod 4, \\
\frac{1}{2}(3n + 3 - i), & \text{if } u = y_i, \ i \equiv 0 \mod 4, \\
\frac{1}{2}(n + 2 + i), & \text{if } u = y_i, \ i \equiv 1 \mod 4, \\
\frac{1}{2}(4n + 2 - i), & \text{if } u = y_i, \ i \equiv 2 \mod 4, \\
\frac{1}{2}(i + 1), & \text{if } u = y_i, \ i \equiv 3 \mod 4.
\end{cases}
\]

It is easy to verify that for \(i \in [2, n - 1], g_1(x_{i-1}) + g_1(x_i) + g_1(x_{i+1}) + g_1(y_i) = g_1(y_{i-1}) + g_1(y_i) + g_1(y_{i+1}) + g_1(x_i) \) is \(4n + 3 \), if \(n \) is even and \(4n + 4 \), if \(n \) is odd.

Next, define an edge labeling \(g_2 : E(H_n) \rightarrow [1, 3n - 4] \) as follows.

\[
g_2(u) = \begin{cases}
\frac{1}{2}(i + 1), & \text{if } u = x_ix_{i+1}, \ i \text{ is odd}, \\
\frac{1}{2}(3n - 2 + i), & \text{if } u = x_ix_{i+1}, \ i \text{ is even}, \\
\frac{1}{2}(2n - 1 + i), & \text{if } u = y_iy_{i+1}, \ i \text{ is odd}, \\
\frac{1}{2}(n + i), & \text{if } u = y_iy_{i+1}, \ i \text{ is even}, \\
3n - 2 - i, & \text{if } u = x_iy_i, \ i \in [2, n - 1].
\end{cases}
\]

It can be checked that for \(i \in [2, n - 1], g_1(x_{i-1}x_i) + g_1(x_ix_{i+1}) + g_1(x_iy_i) = g_1(y_{i-1}y_i) + g_1(y_iy_{i+1}) + g_1(x_iy_i) \) is \(\frac{1}{2}(9n - 6) \), if \(n \) is even and \(\frac{1}{2}(9n - 7) \), if \(n \) is odd.

At last, define a total labeling \(g_3 : V(H_n) \cup E(H_n) \rightarrow [1, 5n - 4] \) as follows.

\[
g_3(u) = \begin{cases}
g_1(u), & \text{if } u \in V(H_n), \\
2n + g_2(u), & \text{if } u \in E(H_n).
\end{cases}
\]

It is a routine procedure to check that \(g_3 \) is a \(K_{1,3} \)-supermagic labeling of \(H_n \) where for every subgraph \(H' \) of \(H_n \) isomorphic to \(K_{1,3} \), \(\sum f_3(H') \) is \(\frac{1}{2}(29n + 1) \).

By applying Theorem 2.1 to this result, we have the following result.

Corollary 2.7. For any integers \(n \geq 3 \) and \(m \geq 1 \), the graph formed by attaching \(m \) pendant edges to every vertex of degree three of the graph \(H_n \) is a \(K_{1,m+3} \)-supermagic graph.

Problem 2. Investigate the existence of \(K_{1,n} \)-supermagic labelings of other classes of graphs.

Acknowledgement

References

