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Abstract

Let G = (V (G), E(G)) be a graph and k be a positive integer. A total k-labeling of G is a map
f : V (G) ∪ E(G)→ {1, 2, . . . , k}. The vertex weight v under the labeling f is denoted by wf (v)
and defined bywf (v) = f(v)+

∑
uv∈E(G) f(uv). A total k-labeling ofG is called vertex irregular if

there are no two vertices with the same weight. The total vertex irregularity strength of G, denoted
by tvs(G), is the minimum k such that G has a vertex irregular total k-labeling. This labelings
were introduced by Bača, Jendroľ, Miller, and Ryan in 2007. Let G and H be two connected
graphs. Let o be a vertex of H . The comb product between G and H , denoted by G �o H , is a
graph obtained by taking one copy of G and |V (G)| copies of H and grafting the i-th copy of H at
the vertex o to the i-th vertex of G. In this paper, we determine the total vertex irregularity strength
of comb product of two cycles and two stars.
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1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). A total labeling f : V ∪ E →
{1, 2, . . . , k} is called a vertex irregular total k-labeling of G if every two distinct vertices x and y
in V (G) satisfy wt(x) 6= wt(y), where wt(x) = f(x)+

∑
xz∈E(G)

f(xz). The total vertex irregularity

strength of G, denoted by tvs(G), is the minimum k for which G has a vertex irregular total k-
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labeling. In [1], Bača et al. gave the bounds for a graph G with minimum degree δ(G) and
maximum degree ∆(G) by the following form:

d(|V (G)|+ δ(G))/(∆(G) + 1)e ≤ tvs(G) ≤ |V (G)|+ ∆(G)− 2δ + 1. (1)

In [6], Przybylo proved that tvs(G) < 32|V (G)|/δ(G)+8 in general and tvs(G) < 8|V (G)|/r+3
for r−regular graphs.

Ramdani et al. in [7], gave an upper bound on the total vertex irregularity strength for
⋃m
i=1Gi

as follows.
Let Gi be an r-regular graph, for i = 1, 2, . . . ,m. Then

tvs

(
m⋃
i=1

Gi

)
≤

m∑
i=1

tvs(Gi)−
⌊
m− 1

2

⌋
. (2)

In the same paper, Ramdani et al. obtained the exact value of the total vertex irregularity
strength for disjoint union of arbitrary r-regular graphs Gi, for i = 1, 2, . . . ,m, if there is a vertex
irregular total (tvs(Gi))-labeling of Gi such that the vertex-weight function

wfi(via) : V (Gi)→ {r + 1, r + 2, · · · , (r + 1)tvs(Gi)− 1}

is a bijection for every i = 1, 2, . . . ,m, which is

tvs

(
m⋃
i=1

Gi

)
=

m∑
i=1

tvs(Gi)−m+ 1. (3)

In [3], Nurdin proved that

tvs(G) ≥ max

{⌈
δ + nδ
δ + 1

⌉
,

⌈
δ + nδ + nδ+1

δ + 2

⌉
, · · · ,

⌈
δ +

∑∆
i=δ ni

∆ + 1

⌉}
(4)

for connected graph G having ni vertices of degree i(i = δ, δ + 1, δ + 2, · · · ,∆), where δ and ∆
are the minimum and the maximum degree of G, respectively.

In [8], Ramdani and Ramdhani obtained the exact value of the total vertex irregularity strength
of comb product between cycles Cn and C4, as follows.

tvs(Cn �o C4) = n+ 1, for n ≥ 3. (5)

Some other results of the total vertex irregularity strength of graphs can be found in [2], [4],
[5], [9], and [10].

2. Main Results

In this paper we determine the total vertex irregularity strength of some comb product graphs.
Let o be a vertex of H . The comb product between G and H , denoted by G �o H , is a graph

obtained by taking one copy of G and |V (G)| copies of H and grafting the i-th copy of H at the
vertex o to the i-th vertex of G.

An illustration of comb product graph is given in Figure 1.
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Figure 1. (a) Two graphs G and H; (b) The comb product graph G�v1
H; (c) The comb product graph G�v2 H

The first result gives the total vertex irregularity strength of comb product between two cycles.

Theorem 2.1. Let Cm and Cn be cycles with order m and n respectively. Then, for m ≥ 3, n ≥ 3,
and for every vertex o in Cm,

tvs(Cm �o Cn) =

⌈
m(n− 1) + 2

3

⌉
.

Proof. Let V (Cm �o Cn) = {ui,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} and

E(Cm �o Cn) = {ui,jui,j+1 | 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1} ∪ {ui,nui,1 | 1 ≤ i ≤ m}
∪{ui,1ui+1,1 | 1 ≤ i ≤ m− 1} ∪ {um,1u1,1}.

An illustration of Cm �o Cn with o be a vertex in Cn can be seen in Figure 2.
The Cm �o Cn graphs have m(n − 1) vertices with degree δ = 2 and m vertices with degree

∆ = 4. So, by using Inequality (4), we have

tvs(Cm �o Cn) ≥ max
{⌈

2+m(n−1)
3

⌉
,
⌈

2+m(n−1)+m
5

⌉}
=
⌈

2+m(n−1)
3

⌉
.

So, we have

tvs(Cm �o Cn) ≥
⌈
m(n− 1) + 2

3

⌉
. (6)
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Figure 2. Comb product graph Cm �o Cn with m = 6 and n = 3

Next, we will show that

tvs(Cm �o Cn) ≤
⌈
m(n− 1) + 2

3

⌉
.

Define a total labeling f : V (Cm�oCn)∪E(Cm�oCn)→
{

1, 2, . . . ,
⌈
m(n−1)+2

3

⌉}
as follows.

f(ui,1) =

⌈
m(n− 1) + 2

3

⌉
, for 1 ≤ i ≤ m;

f(ui,j) =

⌈
i(n− 1)− (n− j)

3

⌉
for 1 ≤ i ≤ m, 2 ≤ j ≤ n;

f(ui,jui,j+1) =

⌈
i(n− 1)− (n− j − 2)

3

⌉
for 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1;

f(ui,nui,1) =

⌈
i(n− 1) + 2

3

⌉
for 1 ≤ i ≤ m;

f(ui,1ui+1,1) =

⌈
m(n− 1) + 2

3

⌉
for 1 ≤ i ≤ m− 1;

f(um,1u11) =

⌈
m(n− 1) + 2

3

⌉
.

From the labeling above, we have the weight of each vertex of Cm �o Cn as follows.
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1. For 1 ≤ i ≤ m and j = 1, we devided the formula into three cases.
(a) Case 1 : For i = 1 and j = 1,

wf (ui,j) = wf (u1,1)
= f(u1,1) + f(u1,1u2,1) + f(u1,1um,1) + f(u1,1u1,2) + f(u1,nu1,1)

=
⌈
m(n−1)+2

3

⌉
+
⌈
m(n−1)+2

3

⌉
+
⌈
m(n−1)+2)

3

⌉
+
⌈
n−1−(n−1−2)

3

⌉
+
⌈
n−1+2

3

⌉
= 3

⌈
m(n−1)+2

3

⌉
+
⌈

2
3

⌉
+
⌈
n+1

3

⌉
.

(b) Case 2 : For 2 ≤ i ≤ m− 1 and j = 1,

wf (ui,j) = wf (ui,1)
= f(ui,1) + f(ui,1ui+1,1) + f(ui−1,iui,1) + f(ui,1ui,2) + f(ui,nui,1)

=
⌈
m(n−1)+2

3

⌉
+
⌈
m(n−1)+2

3

⌉
+
⌈
m(n−1)+2)

3

⌉
+
⌈
i(n−1)−(n−1−2)

3

⌉
+
⌈
i(n−1)+2

3

⌉
= 3

⌈
m(n−1)+2

3

⌉
+
⌈
i(n−1)−(n−3)

3

⌉
+
⌈
i(n−1)+2

3

⌉
.

(c) Case 3 : For i = m and j = 1,

wf (ui,j) = wf (um,1)
= f(um,1) + f(um,1u1,1) + f(um−1,ium,1) + f(um,1um,2) + f(um,num,1)

=
⌈
m(n−1)+2

3

⌉
+
⌈
m(n−1)+2

3

⌉
+
⌈
m(n−1)+2)

3

⌉
+
⌈
m(n−1)−(n−1−2)

3

⌉
+
⌈
m(n−1)+2

3

⌉
= 3

⌈
m(n−1)+2

3

⌉
+
⌈
m(n−1)−(n−3)

3

⌉
+
⌈
m(n−1)+2

3

⌉
.

So, we have the general formula of wf (ui,j), for 1 ≤ i ≤ m and j = 1, as follows,

wf (ui,j) = wf (ui,1) = 3

⌈
m(n− 1) + 2

3

⌉
+

⌈
i(n− 1)− (n− 3)

3

⌉
+

⌈
i(n− 1) + 2

3

⌉
. (7)

for 1 ≤ i ≤ m.
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2. For 1 ≤ i ≤ m and 2 ≤ j ≤ n, we devided the formula into two cases.
(a) Case 1 : For 1 ≤ i ≤ m and 2 ≤ j ≤ n− 1,

wf (ui,j) = f(ui,j) + f(ui,jui,j+1) + f(ui,j−1ui,j)

=
⌈
i(n−1)−(n−j)

3

⌉
+
⌈
i(n−1)−(n−j−2)

3

⌉
+
⌈
i(n−1)−(n−(j−1)−2)

3

⌉
=

⌈
i(n−1)−(n−j)

3

⌉
+
⌈
i(n−1)−(n−j−2)

3

⌉
+
⌈
i(n−1)−(n−j−1)

3

⌉
=

⌈
i(n−1)−(n−j)

3

⌉
+
⌈
i(n−1)−(n−j)+2

3

⌉
+
⌈
i(n−1)−(n−j)+1

3

⌉

=



(
i(n−1)−(n−j)

3

)
+
(
i(n−1)−(n−j)+3

3

)
+
(
i(n−1)−(n−j)+3

3

)
for i(n− 1)− (n− j) ≡ 0 mod 3;(
i(n−1)−(n−j)+2

3

)
+
(
i(n−1)−(n−j)+2

3

)
+
(
i(n−1)−(n−j)+2

3

)
for i(n− 1)− (n− j) ≡ 1 mod 3;(
i(n−1)−(n−j)+1

3

)
+
(
i(n−1)−(n−j)+4

3

)
+
(
i(n−1)−(n−j)+1

3

)
for i(n− 1)− (n− j) ≡ 2 mod 3;

=
(

3i(n−1)−(n−j)+6
3

)
= i(n− 1)− (n− j) + 2.
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(b) Case 2 : For 1 ≤ i ≤ m and j = n,

wf (ui,n) = f(ui,n) + f(ui,nu1) + f(ui,n−1ui,n)

=
⌈
i(n−1)−(n−n)

3

⌉
+
⌈
i(n−1)+2

3

⌉
+
⌈
i(n−1)−(n−(n−1)−2)

3

⌉
=

⌈
i(n−1)

3

⌉
+
⌈
i(n−1)+2

3

⌉
+
⌈
i(n−1)+1)

3

⌉

=



(
i(n−1)

3

)
+
(
i(n−1)+3

3

)
+
(
i(n−1)+3

3

)
for i(n− 1) ≡ 0 mod 3;(
i(n−1)+2

3

)
+
(
i(n−1)+2

3

)
+
(
i(n−1)+2

3

)
for i(n− 1) ≡ 1 mod 3;(
i(n−1)+1

3

)
+
(
i(n−1)+4

3

)
+
(
i(n−1)+1

3

)
for i(n− 1) ≡ 2 mod 3;

=
(

3i(n−1)+6
3

)
= i(n− 1) + 2.

So, we have the general formula of wf (ui,j), for 1 ≤ i ≤ m and 2 ≤ j ≤ n, as follows,

wf (ui,j) = i(n− 1)− (n− j) + 2. (8)

It will be shown that there are no two vertices with the same weight.

(a) It will be shown that wf (ui,1) 6= wf (uk,1) for i 6= k and 1 ≤ i, k ≤ m.
Let i = k + 1. It will be shown that wf (ui,1) > wf (uk,1).

i. For n = 3,

wf (ui,1) = 3
⌈
m(3−1)+2

3

⌉
+
⌈
i(3−1)−(3−3)

3

⌉
+
⌈
i(3−1)+2

3

⌉
= 3

⌈
m(3−1)+2

3

⌉
+
⌈

(k+1)(3−1)−(3−3)
3

⌉
+
⌈

(k+1)(3−1)+2
3

⌉
= 3

⌈
2m+2

3

⌉
+
⌈

2k+2
3

⌉
+
⌈

2k+4
3

⌉
> 3

⌈
2m+2

3

⌉
+
⌈

2k
3

⌉
+
⌈

2k+2
3

⌉
= wf (uk,1).
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ii. For n ≥ 4,

wf (ui,1) = 3
⌈
m(n−1)+2

3

⌉
+
⌈
i(n−1)−(n−3)

3

⌉
+
⌈
i(n−1)+2

3

⌉
= 3

⌈
m(n−1)+2

3

⌉
+
⌈

(k+1)(n−1)−(n−3)
3

⌉
+
⌈

(k+1)(n−1)+2
3

⌉
= 3

⌈
m(n−1)+2

3

⌉
+
⌈
k(n−1)+(n−1)−(n−3)

3

⌉
+
⌈

(k(n−1)+(n−1)+2)
3

⌉
≥ 3

⌈
m(n−1)+2

3

⌉
+
⌈
k(n−1)+(4−1)−(n−3)

3

⌉
+
⌈
k(n−1)+(4−1)+2

3

⌉
= 3

⌈
m(n−1)+2

3

⌉
+
⌈
k(n−1)+(3)−(n−3)

3

⌉
+
⌈
k(n−1)+(3)+2

3

⌉
= 3

⌈
m(n−1)+2

3

⌉
+
⌈
k(n−1)−(n−3)

3

⌉
+
(

3
3

)
+
⌈
k(n−1)+2

3

⌉
+
(

3
3

)
= 3

⌈
m(n−1)+2

3

⌉
+
⌈
k(n−1)−(n−3)

3

⌉
+
⌈
k(n−1)+2

3

⌉
+ 2

= wf (uk,1) + 2
> wf (uk,1).

So, it has been proven that wf (ui,1) 6= wf (uk,1) for every i 6= k and 1 ≤ i, k ≤ m.
(b) It will be shown that wf (ui,j) 6= wf (uk,l) for i 6= k or j 6= l, 1 ≤ i, k ≤ m and

2 ≤ j, l ≤ n.
i. For i > k and j = l,

wf (ui,j) = i(n− 1)− (n− j) + 2
> k(n− 1)− (n− j) + 2
= k(n− 1)− (n− l) + 2
= wf (uk,l).

So, we have wf (ui,j) > wf (uk,l) for i > k and j = l.
ii. For i > k and j > l,

wf (ui,j) = i(n− 1)− (n− j) + 2
> k(n− 1)− (n− l) + 2
= wf (uk,l).

So, we have wf (ui,j) > wf (uk,l) for i > k and j > l.
iii. For i > k and j < l,

wf (ui,j) = i(n− 1)− (n− j) + 2
≥ (k + 1)(n− 1)− (n− j) + 2
= k(n− 1) + (n− 1)− n+ j + 2.

Since j ≥ 2,

k(n− 1) + (n− 1)− n+ j + 2 ≥ k(n− 1) + (n− 1)− n+ 2 + 2
= k(n− 1) + n− n+ 3.
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Since l ≤ n,

k(n− 1) + n− n+ 3 ≥ k(n− 1) + l − n+ 3.
= k(n− 1)− (n− l) + 3
> k(n− 1)− (n− l) + 2
= wf (uk,l).

So, we have wf (ui,j) > wf (uk,l) for i > k and j < l.
So, it has been proven that wf (ui,j) 6= wf (uk,l) for every i 6= k or j 6= l for 1 ≤ i, k ≤
m and 2 ≤ j, l ≤ n.

(c) It will be shown that wf (ui,1) 6= wf (uk,l) for 1 ≤ i, k ≤ m and 2 ≤ l ≤ n.
Since i ≥ 1, we have

wf (ui,1) = 3
⌈
m(n−1)+2

3

⌉
+
⌈
i(n−1)−(n−3)

3

⌉
+
⌈
i(n−1)+2

3

⌉
.

≥ 3
⌈
m(n−1)+2

3

⌉
+
⌈

1(n−1)−(n−3)
3

⌉
+
⌈

1(n−1)+2
3

⌉
.

≥ 3
⌈
m(n−1)+2

3

⌉
+
⌈

2
3

⌉
+
⌈
n+1

3

⌉
.

Since 3
⌈
m(n−1)+2

3

⌉
≥ 3

(
m(n−1)+2

3

)
and n ≥ 3, we have

wf (ui,1) ≥ 3
⌈
m(n−1)+2

3

⌉
+
⌈

2
3

⌉
+
⌈
n+1

3

⌉
.

≥ 3
(
m(n−1)+2

3

)
+
⌈

2
3

⌉
+
⌈

3+1
3

⌉
.

≥ (m(n− 1) + 2) + 1 + 2.
≥ m(n− 1) + 5.

So, we have an inequality

wf (ui,1) ≥ m(n− 1) + 5, (9)

On the other hand, Since 1 ≤ k ≤ m and 2 ≤ l ≤ n,

wf (uk,l) = k(n− 1)− n+ l + 2

≤ m(n− 1)− n+ n+ 2

≤ m(n− 1) + 2.
< m(n− 1) + 5.

So that, for 1 ≤ k ≤ m and 2 ≤ l ≤ n, we have an inequality as follows,

wf (uk,l) < m(n− 1) + 5 (10)

From Inequatily (9) and (10), we have wf (uk,l) < wf (ui,1) for 1 ≤ i, k ≤ m and
2 ≤ l ≤ n.
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From the three points above, we can conclude that from the labeling f , there are no two vertices
with the same weight. So, f is a vertex irregular total

⌈
m(n−1)+2

3

⌉
-labeling of Cm �o Cn.

So we have Inequality (11),

tvs(Cm �o Cn) ≤
⌈
m(n− 1) + 2

3

⌉
. (11)

By using Inequalities (6) and (11), we have an equation as follows,

tvs(Cm �o Cn) =

⌈
m(n− 1) + 2

3

⌉
. (12)

The next theorem provides the total vertex irregularity strength of comb product between two
stars.

Theorem 2.2. Let Sm and Sn be stars with order m+ 1 and n+ 1 respectively, and o be the center
vertex of Sm. Then, for m ≥ 2 and n ≥ 2,

tvs(Sm �o Sn) =

⌈
n(m+ 1) + 1

2

⌉
.

Proof. Let
V (Sm �o Sn) = {ui,j | 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1}

and

E(Sm �o Sn) = {ui,1um+1,1 | 1 ≤ i ≤ m} ∪ {ui,1ui,j | 1 ≤ i ≤ m+ 1, 2 ≤ j ≤ n+ 1.}

An illustration of Sm �o Sn with o be the center vertex in Sn can be seen in Figure 3.
The Sm�o Sn graphs have n(m+ 1) vertices with degree δ = 1, m vertices with degree n+ 1,

and one vertex with degree n+m. So, by using Inequality (4), we have

tvs(Sm �o Sn) ≥ max
{⌈

n(m+1)+1
2

⌉
,
⌈
mn+n+2
n+1

⌉
,
⌈
mn+n+3
n+m+1

⌉}
=
⌈
n(m+1)+1

2

⌉
.

So, we have

tvs(Sm �o Sn) ≥
⌈
n(m+ 1) + 1

2

⌉
. (13)

Next, we will show that

tvs(Sm �o Sn) ≤
⌈
n(m+ 1) + 1

2

⌉
.

Define a total labeling f : V (Sm�oSn)∪E(Sm�oSn)→
{

1, 2, . . . ,
⌈
n(m+1)+1

2

⌉}
as follows.
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Figure 3. Comb product graph Sm �o Sn with m = 5 and n = 4

f(ui,1) =

⌈
n(m+ 1) + 1

2

⌉
for 1 ≤ i ≤ m+ 1;

f(ui,j) =

⌈
n(i− 1) + j − 1

2

⌉
, for 1 ≤ i ≤ m+ 1, 2 ≤ j ≤ n+ 1;

f(ui,1um+1,1) =

⌈
n(m+ 1) + 1

2

⌉
for 1 ≤ i ≤ m;

f(ui,1ui,j) =

⌈
n(i− 1) + j

2

⌉
for 1 ≤ i ≤ m+ 1, 2 ≤ j ≤ n+ 1.

From the labeling above, we have the weight of vertices of Sm �o Sn as follows.
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1. For 1 ≤ i ≤ m and j = 1,

wf (ui,j) = wf (ui,1)
= f(ui,1) +

∑n
j=2 f(ui,1ui,j)

=
⌈
n(m+1)+1

2

⌉
+
∑n

j=2

⌈
n(i−1)+j

2

⌉

=



2
⌈
n(m+1)+1

2

⌉
+ n

(
n(i−1)

2

)
+ n2+4n−1

4
for n is odd and i is odd;

2
⌈
n(m+1)+1

2

⌉
+ n

(
n(i−1)+1

2

)
+ n2+2n+1

4
for n is odd and i is even;

2
⌈
n(m+1)+1

2

⌉
+ n

(
n(i−1)

2

)
+ n2+4n

4
for n is even.

2. For i = m+ 1 and j = 1,

wf (ui,j) = wf (um+1,1)
= f(um+1,1) +

∑n
j=2 f(um+1,1um+1,j) +

∑m
i=1 f(ui,1um+1,1)

=
⌈
n(m+1)+1

2

⌉
+
∑n

j=2

⌈
n((m+1)−1)+j

2

⌉
+
∑m

i=1

⌈
n(m+1)+1

2

⌉

=



(m+ 1)
⌈
n(m+1)+1

2

⌉
+ n

(
nm+1

2

)
+ n2+2n+1

4
for n is odd and m is odd;

(m+ 1)
⌈
n(m+1)+1

2

⌉
+ n

(
nm
2

)
+ n2+4n−1

4
for n is odd and m is even;

(m+ 1)
⌈
n(m+1)+1

2

⌉
+ n

(
nm
2

)
+ n2+4n

4
for n is even.

3. For 1 ≤ i ≤ m+ 1 and 2 ≤ j ≤ n+ 1,

wf (ui,j) = f(ui,j) + f(ui,1ui,j)

=
⌈
n(i−1)+j−1

2

⌉
+
⌈
n(i−1)+j

2

⌉

=


(
n(i−1)+j−1

2

)
+
(
n(i−1)+j+1

2

)
for n(i− 1) + j is odd;

(
n(i−1)+j

2

)
+
(
n(i−1)+j

2

)
for n(i− 1) + j is even;

= n(i− 1) + j.

It will be shown that there are no two vertices with the same weight.
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1. It will be shown that wf (ui,1) 6= wf (uk,1) for i 6= k and 1 ≤ i, k ≤ m.
Let i = k + 1. It will be shown that wf (ui,1) > wf (uk,1).

(a) For i is odd, (then, k is even), we have

wf (ui,1) = 2
⌈
n(m+1)+1

2

⌉
+ n

(
n(i−1)

2

)
+ n2+4n−1

4

= 2
⌈
n(m+1)+1

2

⌉
+ n

(
n(k)

2

)
+ n2+4n−1

4
.

= 2
⌈
n(m+1)+1

2

⌉
+ n

(
nk−(n−1)

2

)
+ n(n−1)

2
+ n2+2n+1

4
+ 2n−2

4
.

= 2
⌈
n(m+1)+1

2

⌉
+ n

(
n(k−1)+1

2

)
+ n2+2n+1

4
+ n(n−1)

2
+ 2n−2

4
.

= wf (uk,1) + n(n−1)
2

+ 2n−2
4
.

Since n > 2, then n(n−1)
2

+ 2n−2
4

> 1. So,

wf (ui,1) > wf (uk,1). (14)

(b) For i is even, (then, k is odd), we have

wf (ui,1) = 2
⌈
n(m+1)+1

2

⌉
+ n

(
n(i−1)+1

2

)
+ n2+2n+1

4

= 2
⌈
n(m+1)+1

2

⌉
+ n

(
n(k)+1

2

)
+ n2+2n+1

4
.

= 2
⌈
n(m+1)+1

2

⌉
+ n

(
nk+1

2

)
− 2n2

4
+ n2+4n−1

4
+ 2n2+2

4
− 2n

4
.

= 2
⌈
n(m+1)+1

2

⌉
+ n

(
nk
2

)
+ n

2
− n2

2
+ n2+4n−1

4
+ n2+1

2
− n

2
.

= 2
⌈
n(m+1)+1

2

⌉
+ n

(
nk
2

)
− n2

2
+ n2+4n−1

4
+ n2+1

2
.

= 2
⌈
n(m+1)+1

2

⌉
+ n

(
nk−n

2

)
+ n2+4n−1

4
+ n2+1

2
.

= 2
⌈
n(m+1)+1

2

⌉
+ n

(
n(k−1)

2

)
+ n2+4n−1

4
+ n2+1

2
.

= wf (uk,1) + n2+1
2
.

Since n > 2, then n2+1
2

> 2. So,

wf (ui,1) > wf (uk,1). (15)

So, it has been proven that wf (ui,1) 6= wf (uk,1) for i 6= k and 1 ≤ i, k ≤ m.
2. It will be shown that wf (ui,1) 6= wf (um+1,1) for 1 ≤ i ≤ m.

For 1 ≤ i ≤ m, we have Inequality (16),

wf (ui,1) ≤



2
⌈
n(m+1)+1

2

⌉
+ n

(
n(m−1)

2

)
+ n2+4n−1

4
for n is odd and m is odd;

2
⌈
n(m+1)+1

2

⌉
+ n

(
n(m−1)+1

2

)
+ n2+2n+1

4
for n is odd and m is even;

2
⌈
n(m+1)+1

2

⌉
+ n

(
n(m−1)

2

)
+ n2+4n

4
for n is even.

(16)
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On the other hand, since m > 2, we have Inequality (17),

wf (um+1,1) >



2
⌈
n(m+1)+1

2

⌉
+ n

(
nm+1

2

)
+ n2+2n+1

4
for n is odd and m is odd;

2
⌈
n(m+1)+1

2

⌉
+ n

(
nm
2

)
+ n2+4n−1

4
for n is odd and m is even;

2
⌈
n(m+1)+1

2

⌉
+ n

(
nm
2

)
+ n2+4n

4
for n is even.

(17)
From Inequality (16) and (17), we have

wf (um+1,1) > wf (ui,1) (18)

for every 1 ≤ i ≤ m.
3. It will be shown that wf (ui,j) 6= wf (uk,l) for i 6= k or j 6= l, 1 ≤ i, k ≤ m + 1 and

2 ≤ j, l ≤ n+ 1.
(a) For i > k and j = l,

wf (ui,j) = n(i− 1) + j
> n(k − 1) + j
= n(k − 1) + l
= wf (uk,l).

So, we have wf (ui,j) > wf (uk,l) for i > k and j = l.
(b) For i > k and j > l,

wf (ui,j) = n(i− 1) + j
> n(k − 1) + j
> n(k − 1) + l
= wf (uk,l).

So, we have wf (ui,j) > wf (uk,l) for i > k and j > l.
(c) For i > k and j < l,

wf (ui,j) = n(i− 1) + j
≥ n((k + 1)− 1) + j
= n(k − 1) + n+ j.

Since j ≥ 2,
n(k − 1) + n+ j ≥ n(k − 1) + n+ 2.

Since n+ 1 ≥ l,

n(k − 1) + n+ 2 ≥ n(k − 1) + l + 1.
> n(k − 1) + l
= wf (uk,l).

So, we have wf (ui,j) > wf (uk,l) for i > k and j < l.
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So, it has been proven that wf (ui,j) 6= wf (uk,l) for every i 6= k or j 6= l for 1 ≤ i, k ≤ m+ 1
and 2 ≤ j, l ≤ n+ 1.

4. It will be shown that wf (ui,1) 6= wf (uk,l) for 1 ≤ i, k ≤ m+ 1 and 2 ≤ l ≤ n+ 1.
Since k ≤ m+ 1 and l ≤ n+ 1, we have

wf (uk,l) = n(k − 1) + l
≤ n((m+ 1)− 1) + (n+ 1)
= n(m+ 1) + 1

= 2
(
n(m+1)+1

2

)
≤ 2

⌈
n(m+1)+1

2

⌉
.

So, for 1 ≤ k ≤ m+ 1 and 2 ≤ l ≤ n+ 1, we have Inequality (19),

wf (uk,l) ≤ 2

⌈
n(m+ 1) + 1

2

⌉
. (19)

On the other hand, for 1 ≤ i ≤ m, we have

wf (ui,1) =



2
⌈
n(m+1)+1

2

⌉
+ n

(
n(i−1)

2

)
+ n2+4n−1

4
for n is odd and i is odd;

2
⌈
n(m+1)+1

2

⌉
+ n

(
n(i−1)+1

2

)
+ n2+2n+1

4
for n is odd and i is even;

2
⌈
n(m+1)+1

2

⌉
+ n

(
n(i−1)

2

)
+ n2+4n

4
for n is even.

Since i ≥ 1, we have

wf (ui,1) ≥



2
⌈
n(m+1)+1

2

⌉
+ n2+4n−1

4
for n is odd and i is odd;

2
⌈
n(m+1)+1

2

⌉
+ n

(
1
2

)
+ n2+2n+1

4
for n is odd and i is even;

2
⌈
n(m+1)+1

2

⌉
+ n2+4n

4
for n is even.

Since n > 1, then n2+4n−1
4

> 1, n
(

1
2

)
+ n2+2n+1

4
> 1, and n2+4n

4
> 1. So, we have inequality

as follows.

wf (ui,1) > 2

⌈
n(m+ 1) + 1

2

⌉
. (20)

From Inequality (19), (20), and (18), we have wf (uk,l) < wf (ui,1) < wf (um+1,1) for 1 ≤ i ≤ m,
1 ≤ k ≤ m+ 1, and 2 ≤ l ≤ n+ 1.

From the three points above, there are no two vertices with the same weight. So, f is a vertex
irregular total

⌈
n(m+1)+1

2

⌉
-labeling of Sm �o Sn. So, we have inequality

tvs(Sm �o Sn) ≤
⌈
n(m+ 1) + 1

2

⌉
. (21)
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From Inequality (13) and (21), we have Equation (22),

tvs(Sm �o Sn) =

⌈
n(m+ 1) + 1

2

⌉
. (22)
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