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Abstract

Fibonacenes are unbranched catacondensed benzenoid hydrocarbons in which all the non-terminal
hexagons are angularly annelated. A hexagon is said to be angularly annelated if the hexagon is
adjacent to exactly two other hexagons and possesses two adjacent vertices of degree 2.
Fibonacenes possess remarkable properties related with Fibonacci numbers. Various graph
properties of fibonacenes have been extensively studied, such as their saturation numbers,
independence numbers and Wiener indices.

In this paper, we show that the locating-chromatic number of any fibonacene graph is 4 and the
partition dimension of such a graph is 3.
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1. Introduction

Many applications of graphs can be found in chemistry. Chemical graphs were first introduced
in the middle of the 18th century. Graph theory is increasingly popular in chemistry because
almost all problems in chemistry can be modeled in simple graphs that directly represent molecules,
chemical bonds and so on. Furthermore, graph theory provides simple rules so that it can obtain
many qualitative predictions about the structure and reactivity of various compounds. Seeing the
benefits of graph theory in chemistry, this is interesting to discuss.
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Gutman dan Klavžar [12] discussed the chemical graph theory of fibonacenes. A benzenoid
system is a connected plane graph without cut-vertices in which all inner faces are hexagons, such
that two hexagons are either disjoint or have exactly one common edge, and no three hexagons
share a common edge. A benzenoid system is said to be unbranched catacondensed if it does not
possess a vertex shared by three hexagons and not possess a hexagon having three neighboring
hexagons. Fibonacenes are unbranched catacondensed benzenoid hydrocarbons in which all the
non-terminal hexagons are angularly annelated. A hexagon is said to be angularly annelated if the
hexagon is adjacent to exactly two other hexagons and possesses two adjacent vertices of degree
2. Previously fibonacenes were introduced by Balaban [5], although it seems to be first mentioned
by Anderson [2]. Fibonacenes have the Kekulé structure, which is in graph theory it is called
a perfect matching. The number of perfect matching from fibonacenes with h hexagon forms
Fibonacci numbers. Balaban [5] gives the name fibonaccene. However, he suppressed one c for
simplicity and for similarity with the established name ”acenes”.

There are several papers that have discussed benzenoid specifically fibonacenes, such as Wiener
index [9], saturation number [10], and independence number [15]. The applications of these topics
in chemistry have also been mentioned in [9, 10, 15].

The concept of the locating-chromatic number was first introduced by Chartrand et al. [6]. The
locating-chromatic number concept of a graph is as a combination of two concepts that is the graph
coloring concept and the partition dimension concept. The concept of the partition dimension of
a graph was introduced by Chartrand et al. [7] as an extension of the metric dimension concept
introduced by Harary and Melter [13].

In this paper, we consider only simple connected graphs. Let G(V,E) be a graph with the
vertex-set V and edge-set E. For a vertex v of a connected graph G and a subset S of V (G), the
distance between v and S is d(v, S) =min{d(v, x) | x ∈ S}. Let N(v) be the set of vertices
adjacent to v. For an ordered k−partition Π = {S1, S2, . . . , Sk} of V (G), the representation of
v with respect to Π is the ordered k-tuple r(v | Π) = (d(v, S1), d(v, S2), . . . , d(v, Sk)). The k-
partition Π is a resolving partition if the ordered k-tuple r(v | Π), v ∈ V (G), are distinct. The
minimum k for which there is a resolving k-partition of V (G) is the partition dimension pd(G) of
G.

Chartrand et al [8] characterized all graphs with partition dimension 2, and all graphs on n
vertices with partition dimension n− 1 or n. Lately, Tomescu [19] characterized all graph of order
n having partition dimension n− 2.

Proposition 1.1. [8] A connected graph G has partition dimension 2 if and only if G is a path.

The following lemma appeared in [8] will be useful to us.

Lemma 1.1. [8] Let Π be a resolving partition of V (G) and u, v ∈ V (G). If d(u,w) = d(v, w)
for all w ∈ V (G)\{u, v} then u and v belong to distinct element of Π.

Next, let G(V,E) be a graph with the vertex-set V and edge-set E. Let c be a proper coloring
of G, namely c(u) 6= c(v) for any adjacent vertices u and v in G. Let c be a k-coloring of G
and Π = {C1, C2, . . . , Ck} be a partition of V (G) induced by c, where Ci is the set of vertices
receiving color i for 1 ≤ i ≤ k. The color code cΠ(v) of v is defined as the ordered k-tuple
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(d(v, C1), d(v, C2), . . . , d(v, Ck)). If all vertices of G have distinct color codes, then c is called a
locating-chromatic k-coloring ofG (k-locating coloring, in short). The locating-chromatic number
of a graph G, denoted by χL(G), is the smallest k such that graph G admits a k−locating coloring.

The following theorem taken from paper of Chartrand et al. [6] is a fundamental theorem about
the locating chromatic number of a graph.

Theorem 1.1. [6] Let c be a locating coloring in a connected graph G. If u and v are distinct ver-
tices of G such that d(u,w) = d(v, w) for all w ∈ V (G)\{u, v}, then c(u) 6= c(v). In particular,
if u and v are non-adjacent vertices of G such that N(u) = N(v), then c(u) 6= c(v).

Theorem 1.2. [6] The locating chromatic number of a cycle Cn is 3 for odd n and 4 for otherwise.

Many papers studied about the partition dimension that containing cycles, see [18, 14, 1].
While, various results of the locating-chromatic number that containing cycles, see [16, 17, 4, 11].
In [3], Asmiati and Baskoro characterized all graph containing cycles with locating-chromatic
number three.

In this paper, we show that the locating-chromatic number and the partition dimension of fi-
bonacene graphs are 4 and 3, respectively.

2. Main Results

For h ≥ 1, let F (h) be any fibonacene graph. Then, F (h) has n = 4h + 2 vertices of which
2h+ 4 are of degree 2 and 2h− 2 of degree 3. The F (h) may have type as helicene (Hh), zig-zag
fibonacene (Zh), serpent (Sh), and any combination of them depicted in Figure 1.

Figure 1. Three extremal fibonacenes.

2.1. Locating-chromatic number of fibonacene graphs
This subsection will present the result of the locating-chromatic number for graph F (h).

Theorem 2.1. Let F (h) be a connected fibonacene graph with h hexagons, then χL(F (h)) = 4.

Proof. Let V (F (h)) = {v0, v1, v2, . . . , vn−1} where v0 is a fixed vertex of degree 2 in terminal
hexagon and v0, v1, v2, . . . , vn−1 are cyclicly ordered by Hamiltonian. Let E(F (h)) = {vivi+1 |
i = 0, 1, . . . , n − 2} ∪ {v0vn−1} ∪ I , where I is the set of internal edges between two adjacent
hexagons. For a contrary suppose χL(F (h)) ≤ 3. Since F (h) is not a path then χL(F (h)) > 2.
Now, let c be a 3−coloring on F (h) where Ci = {v ∈ V (F (h)) | c(v) = i}.
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1. There exists one hexagon with 2 colors. let H be the hexagon with 2 colors (1 and 2). Now,
consider the vertex uwith the third color and with minimum distance to hexagonH . Without
loss of generality, we may assume the vertex u is in the right side of hexagon H , depicted in
Figure 2. Assume the distance from u to H is equal to d(u, vi). Then, the color codes of the
two neighbors of vi in H are the same, namely (1, 0, d(u, vi) + 1).

Figure 2. Fibonacene graph coloring with there exists one hexagon with 2 colors.

2. At least one hexagon contains 3 colors.
There are three cases to be considered as depicted in Figure 3. In each case, there are two
vertices with the same color codes. These color codes are shown in bold.

Figure 3. Fibonacene graph coloring with at least one hexagon contains 3 colors.

Therefore, χL(F (h)) ≥ 4.
Next, define Ai(v0) = {v ∈ F (h) | d(v, v0) = i} for i ∈ [0, dmax] where dmax = max

{d(v, v0)}. For any i, we have that |Ai(v0)| ≤ 4 since the distribution of all vertices at distance i
from v0 can be depicted in Figure 4.

Figure 4. The shortest path from v0 to vdmax .

Now, define a coloring in F (h) by using algorithm 1.
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Algorithm 1 (Finding locating coloring in fibonacene graph).
Let c : V (F (h))→ {1, 2, 3, 4} such that :

1. c(v0) = 1.
2. For i = 1 to imax do the following actions.

Case 1. |Ai(v0)| = 2 or |Ai(v0)| = 3. Define c(Ai(v0)) → {2, 3, 4} such that |c(Ai(v0))| =
|Ai(v0)| and we always use the smallest possible colors in the following ordering.

1. Color a vertex v ( if any ) in Ai(v0) where |N(v) ∩ Ai−1(v0)| = 2.
2. Color at most two vertices v andw inAi(v0) where |N(v)∩N(w)∩Ai−1(v0)| = 1.
3. Color a vertex v in Ai(v0) where |N(v) ∩ Ai−1(v0)| = 1.

Case 2. |Ai(v0)| = 4. Let Ai(v0) = {a1, a2, a3, a4}. Now define a coloring c(Ai(v0)) →
{2, 3, 4} such that we always use the smallest possible colors in the following ordering.

1. Color vertex a1 in Ai(v0) where |N(a1) ∩ Ai−1(v0)| = 2.
2. Color vertex a2 in Ai(v0) and c(a2) = c(a1), where |N(a1)∩N(a2)∩Ai−1(v0)| =

1.
3. Color a vertex v ∈ Ai+1(v0) with v ∈ N(a2) such that c(v) = c(s) where s ∈
N(a1) ∩N(a2) ∩ Ai−1(v0).

4. Color vertex a3 where a3 ∈ N(v) ∩ Ai(v0).
5. Color the remaining vertex in Ai(v0).

end algorithm 1.

We will show that c is a locating-coloring on F (h). To do so, we have to prove that for any two
vertices x and y in F (h), their color codes are distinct. Let Π = {C1, C2, C3, C4} be the partition
of V (F (h)) induced by the above coloring c with Ci = {v ∈ F (h) | c(v) = i}. Take any two
vertices x and y in F (h) such that c(x) = c(y). Of course x 6= v0 and y 6= v0. If d(x, v0) 6= d(y, v0)
then cΠ(x) 6= cΠ(y). Now, if d(x, v0) = d(y, v0) then x, y ∈ Ai(v0) for some i and |Ai(v0)| = 4.
So cΠ(x) 6= cΠ(y) because d(x,Cj) = 1 and d(y, Cj) = 2 for some j ∈ {2, 3, 4}.

Therefore, c is a locating-coloring on F (h) and χL(F (h)) = 4.

For h ≥ 1, let G(h) be any unbranched catacondensed benzenoid graph. In this case, G(h)
can have linearly annelated hexagons as depicted in Figure 5. A hexagon is said to be linearly
annelated if it is adjacent to exactly two other hexagons and it does not have two adjacent vertices
of degree 2. Therefore, any graph G(h) can be a fibonacene or not.

Theorem 2.2. Let G(h) be a connected unbranched catacondensed benzenoid graph with h
hexagons, then χL(G(h)) = 4.

Proof. The proof is the same as the one of Theorem 2.1, since the method used in Theorem 2.1
can be also applied to the graph that contains linearly annelated hexagons.

120



www.ijc.or.id

The locating-chromatic number and partition dimension ... | R. Suryaningsih and E. T. Baskoro

Figure 5. Unbranched catacondensed benzenoid graphs with 4 hexagons. The graphs in (c) and (d) are fibonacenes
and the graphs in (a) and (b) contain linearly annelated hexagons.

2.1.1. Partition dimension of fibonacene graphs
This subsection will present the result of the partition dimension for fibonacene graphs.

Theorem 2.3. Let F (h) be a connected fibonacene graph with h hexagons, then pd(F (h)) = 3.

Proof. Let V (F (h)) = {v0, v1, v2, . . . , vn−1} where v0 is a fixed vertex of degree 2 in terminal
hexagon and v0, v1, v2, . . . , vn−1 are cyclicly ordered by Hamiltonian. Let E(F (h)) = {vivi+1 |
i = 0, 1, . . . , n − 2} ∪ {v0vn−1} ∪ I , where I is the set of internal edges between two adjacent
hexagons. According to Proposition 1.1, pd(F (h)) ≥ 3. For i ∈ [0, dmax] where dmax = max
{d(v, v0)}, define Ai(v0) = {v ∈ (F (h)) | d(v, v0) = i}. Since the distribution of all vertices at
distance i from v0 can be depicted in Figure 4, then |Ai(v0)| ≤ 4 for any i.

Next, let Π1 = {S1, S2, S3} be a partition on V (F (h)) induced by a mapping l : V (F (h)) −→
{1, 2, 3} by using the following algorithm.

Algorithm 2 (Finding resolving partition in fibonacene graph.)
Partition all vertices in V (F (h)) by following steps.

1. Define l(v0) = 1 and l(vdmax) = 2.
2. For i = 1 to dmax − 1 do

Case 1 |Ai(v0)| = 2 and let Ai(v0) = {a1, a2}. Then, assign l(a1) = 2 and l(a2) = 3 if
|N(a1) ∩ Ai−1(v0)| ≥ |N(a2) ∩ Ai−1(v0)|.

Case 2 |Ai(v0)| = 3 and let Ai(v0) = {a1, a2, a3}. Then, these three vertices a1, a2, a3

must be located in two neighboring hexagons. Let a1 be the vertex contained in
the closest hexagon to terminal hexagon that contains v0. Now choose a3 such that
N(a1) ∩N(a3) /∈ Ai−1(v0) ∪ Ai+1(v0).

1. If |Ai−1(v0)| = 2 or |Ai−1(v0)| = 3, then l(a1) = l(a3) = 2 and l(a2) = 3.
2. If |Ai−1(v0)| = 4 and let k be the smallest nonnegative integer such that |Ai−2−k| =

3, then assign

(l(a1), l(a2), l(a3)) =


(3, 3, 2), if k ≡ 0(mod 4)

(2, 3, 2), if k ≡ 1(mod 4)

(2, 2, 3), if k ≡ 2(mod 4)

(2, 3, 2), if k ≡ 3(mod 4).
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Case 3 |Ai(v0)| = 4 and let Ai(v0) = {a1, a2, a3, a4}. Then, these four vertices a1, a2, a3, a4

must be located in three hexagons consequtively. Let a1 be the vertex contained in
the closest hexagon to terminal hexagon that contains v0 and choose a2 such that
N(a1) ∩ N(a2) ∈ Ai−1(v0). Let a4 be the vertex contained in the farthest hexagon to
terminal hexagon that contains v0 and choose a3 such that N(a3) ∩N(a4) ∈ Ai−1(v0).
Moreover N(a2) ∩ N(a3) ∈ Ai+1(v0). Let k be the smallest nonnegative integer such
that |Ai−2−k| = 3, then assign

(l(a1), l(a2), l(a3), l(a4)) =


(2, 3, 3, 2), if k ≡ 0(mod 4)

(3, 3, 2, 2), if k ≡ 1(mod 4)

(2, 2, 2, 3), if k ≡ 2(mod 4)

(2, 2, 3, 2), if k ≡ 3(mod 4).

end algorithm 2.

We will show that l is a resolving partition on F (h). To do so, we have to show that for
any two vertices x and y, their repsesentations will be sdistinct. Take any two vertices x and y
in F (h) such that l(x) = l(y). Of course, x 6= v0 and y 6= v0. If d(x, v0) 6= d(y, v0) then
r(x|Π1) 6= r(y|Π1). Now, if d(x, v0) = d(y, v0) then we have x, y ∈ Ai(v0) for some i. Note that
the symbol (a; b; . . . , c) represents |Ai−1(v0)| = a, |Ai(v0)| = b and |Ai+k(v0)| = c for some k.

1. If |Ai(v0)| = 3 then the only possible distribution of the vertices at distance i − 1, i and
i + 1 from v0 are (2; 3; 3), (2; 3; 4), (3; 3; 1), (3; 3; 2), (4; 3; 1), (4; 3; 2). For the first four
cases namely (2; 3; 3), (2; 3; 4), (3; 3; 1), and (3; 3; 2), all vertices in Ai−1(v0), Ai(v0) and
Ai+1(v0) will be partitioned according to Algorithm 2. Therefore, we have l(a1) = l(a3) = 2
and l(a2) = 3 so x = a1 and y = a3. In these case, we have that r(x|Π1) 6= r(y|Π1), as
shown in Figure 6. All vertices in Ai−1(v0), Ai(v0), Ai+1(v0) respectively is indicated by 2,
◦, M. For the cases of (4; 3; 1) and (4; 3; 2), we will discuss later in case of |Ai(v0)| = 4.

2. If |Ai(v0)| = 4 then the only possible distribution of vertices at distance i − 1, i and i + 1
from v0 are (3; 4; 3), (3; 4; 4), (4; 4; 3), (4; 4; 4). All four cases will be combined with cases of
(4; 3; 1) and (4; 3; 2). If hexagon H is terminal hexagon then it will get the case of (4; 3; 1).
If hexagon H is not terminal hexagon then there are two possibilities for the addition of
hexagon to keep forming a fibonacene graph. If e2 is the internal edge then the next image
will be obtained. If e1 is the internal edge then it will get the case of (4; 3; 2). Therefore,
vertices x and y will be contained in ◦, M, O, 2, ., and /. All vertices in A(v0) will be
partitioned according to cases 2.2 and 3 Algorithm 2. So, if x, y ∈ Ai(v0) for some i then
r(x|Π1) 6= r(y|Π1), as shown in Figure 7 and the representations of vertices can see on table
1.

Therefore, since for each vertices on F (h) have distinct representations so pd(F (h)) ≤ 3.
We get pd(F (h)) = 3.
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Figure 6. The representations of vertices in |Ai(v0)| = 3 for the cases of (2; 3; 3), (2; 3; 4), (3; 3; 1), (3; 3; 2).

3. Acknowledgement

This research has been supported by the Research Grant: ”Penelitian Dasar Unggulan Pergu-
ruan Tinggi (PDUPT)”, the Ministry of Research, Technology and Higher Education and the Re-
search Grant ”Program Penelitian dan Pengabdian kepada Masyarakat (P3MI), Institut Teknologi
Bandung”, Indonesia.

References

[1] Amrullah, E. T. Baskoro, and R. Simajuntak, The partition dimension of a subdivision of a
complete graph, Procedia Comput. Sci. 74 (2015), 53–59.

[2] P. G. Anderson, Fibonaccene, in: A. N. Philippou, G. E. Bergum, and A. F. Horadam (Eds.),
Fibonacci numbers and their applications, Reidel, Dordrecht, (1986), pp. 1–8.

[3] Asmiati and E. T. Baskoro, Characterizing all graphs containing cycle with the locating-
chromatic number 3, AIP Conf. Proc. 1450 (2012), 351–357.

[4] Asmiati, Wamiliana, Devriyadi, and R. Yulianti, On some Petersen graphs having locating-
chromatic number four or five, Far East J. Math. Sci. 102 (4) (2017), 769–778.

[5] A. T. Balaban, Chemical graphs. 50. Symmetry and enumeration of fibonacenes (Unbranched
catacondensed benzenoids isoarithmic with helicenes and zigzag catafusenes), MATCH Com-
mun. Math. Comput. Chem. 24 (1989), 29–38.

[6] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P. Zhang, The locating-chromatic
number of a graph, Bull. Inst. Combin. Appl. 36 (2002), 89–101.

[7] G. Chartrand, E. Salehi, and P. Zhang, On the partition dimension of a graph, Congr. Numer.
130 (1998), 157–168.

[8] G. Chartrand, E. Salehi, and P. Zhang, The partition dimension of a graph, Aequationes Math.
59 (2000), 45–54.

123



www.ijc.or.id

The locating-chromatic number and partition dimension ... | R. Suryaningsih and E. T. Baskoro

Figure 7. The cases of |Ai(v0)| = 4.
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