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Abstract

Burger and Vuuren defined the size multipartite Ramsey number for a pair of complete, balanced,
multipartite graphs m,; (K s, K.xq), for natural numbers a, b, ¢, d and j, where a, ¢ > 2, in 2004.
They have also determined the necessary and sufficient conditions for the existence of size multi-
partite Ramsey numbers m; (Koxp, K.xq). Syafrizal et. al. generalized this definition by removing
the completeness requirement. For simple graphs G and H, they defined the size multipartite
Ramsey number m;(G, H) as the smallest natural number ¢ such that any red-blue coloring on
the edges of K., contains a red GG or a blue [ as a subgraph. In this paper, we determine the
necessary and sufficient conditions for the existence of multipartite Ramsey numbers m,;(G, H),
where both G and H are non complete graphs. Furthermore, we determine the exact values of the
size multipartite Ramsey numbers m; (K ,,, K1 ,,) for all integers m,n > 1 and j = 2, 3, where
K, is a star of order m + 1. In addition, we also determine the lower bound of m3 (kK ,,, Cs),
where kK ,, is a disjoint union of k copies of a star K ,,, and C is a cycle of order 3.
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1. Introduction

The classical Ramsey number r(a, ¢) is the smallest natural number j such that any red-blue
coloring of the edges of K;, necessarily forces a red K, or a blue K. as subgraph. The size
multipartite Ramsey number is one of generalizations of the classical Ramsey number. Burger
and Vuuren [1] gave a definition of the size multipartite Ramsey numbers for a pair of complete,
balanced, multipartite graphs, as follows. Let a, b, ¢, d and j, be natural numbers with a, ¢ > 2, the
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size multipartite Ramsey number m;(K,xp, Kcxq) is the smallest natural number ¢ such that any
red-blue coloring of the edges of K., necessarily forces a red K, or a blue K., as subgraph.
They also determined m,;(Ksx2, K3x1), for j > 1 and have established the following existence of
size multipartite Ramsey numbers.

Theorem 1.1. (The existence of size numbers) [1]
The size multipartite Ramsey numbers m;(K,xp, K xq) exists for any a,c > 2 and b,d > 1 if and
only if j > r(a,c).

Syafrizal et. al. [10] generalized this definition by removing the completeness requirement. For
simple graphs G and H, they defined the size multipartite Ramsey number m;(G, H ) as the small-
est natural number ¢ such that any red-blue coloring on the edges of K., contains a red G or a
blue H as a subgraph. The size bipartite Ramsey numbers for stars versus paths ms (K ., P,), for
m,n > 2 given by Hattingh and Henning [3]. In 2007, Syafrizal et al. [11] determined the size
multipartite Ramsey numbers for stars versus P;. Then, Surahmat et al. [9] gave the size tripartite
Ramsey numbers for stars versus P,, for 3 < n < 6. Furthermore, we gave the size multipartite
Ramsey numbers for stars versus cycles [5] and the size tripartite Ramsey numbers for a disjoint
union of m copies of a star K ,, versus 5 [6]. In 2017, Jayawardene et al. [4] and Effendi et al.
[2] determined the size multipartite Ramsey numbers for stars versus paths. Then, we also gave the
size multipartite Ramsey numbers for stars versus paths and cycles [7], that complete the previous
results given by Syafrizal and Surahmat. Recently, we determined m,;(mK ,,, H), where H = P;
or Ky 3forj>3,m,n>2[8].

In this paper, we determine the necessary and sufficient conditions for the existence of the size
multipartite Ramsey numbers m;(G, H), where both G and H are non complete graphs. Further-
more, we determine the exact values of the size multipartite Ramsey numbers m; (K ,,, K1 5,)
for all integers m,n > 1 and 7 = 2,3. In addition, we also determine the lower bound of
mg (kK1 m, Cs).

We call some basic definitions that will be used in this paper, as follows. Let GG be a finite and
simple graph. Let vertex and edge sets of graph G are denoted by V (G) and E(G), respectively.
Vertex colorings in which adjacent vertices are colored differently are proper vertex colorings. A
graph G is k-colorable if there exists a proper vertex coloring of GG from a set of k£ colors. A
matching of a graph G is defined as a set of edges without a common vertex. A matching of
maximum size in G is a maximum matching in G. The maximum degree of G is denoted by A(G),
where A(G) = maz{d(v)|v € V(G)}. The minimum degree of G is denoted by 0(G), where
d(G) = min{d(v)|v € V(G)}. A star K ,, is the graph on n+ 1 vertices with one vertex of degree
n, called the center of this star, and n vertices of degree 1, called the leaves. A disjoint union of k&
copies of a star K ,,, a cycle of order n, and a path of order n are denoted by kK ,,,, C,,, and P,,
respectively.

2. Results

For any non complete graphs G and H, we will determine the necessary and sufficient con-
ditions for the existence of the size multipartite Ramsey numbers m;(G, H). In order to do so,
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we recall the definition of the chromatic number of a graph GG, denoted by x(G), which is the
minimum positive integer k£ for which G is k-colorable.

Lemma 2.1. In every proper vertex coloring of a simple graph G, the maximum number of the
vertices in G with the same color is |V (G)| — x(G) + 1.

Proof. Let c be a proper vertex coloring of G, with x(G) color, thatis ¢ : V/(G) — {1,2, ..., x(G)}.
Let C; = {v € V(G)|c(v) = i}. Without lost generality, let |C;| < |Cs| < ... < |Cy(c)]. Since for
1 <i < x(G) -1, wehave |C;| > 1, then |Cy(ey| < |V(G)| — x(G) + 1. O

Theorem 2.1. Let G and H be two non complete graph. The multipartite Ramsey numbers
m;(G, H) are finite if and only if j > maks{x(G), x(H)}.

Pl’OOf Let mj(G, H) =1 < 00, that is Kjxt — (G, H) If Kjxt =& FQ, then (Fl 2 G =
Fy, D H)or (F, 2 H= F, O G). This implies that j > y(H) and j > x(G)}. Therefore,
j = maks{x(G), x(H)}.

Let j > maks{x(G), x(H)}. We show that m;(G, H) is finite. We construct an positive
integer ¢ such that K., — (G, H). Letp = |V(G)| — x(G) + 1,9 = |[V(H)| — x(H) + 1
and t = p+ ¢. Note that V(K;) = V(Kjxp) U V(Kjx,). Based on Lemma 2.1, p and ¢ are
the maximum number of the same colored vertices in G' and H, respectively, so Ky, 2 G and
K,v, 2 H. Therefore, K;,; — (G, H). Then, m;(G, H) < t. Since graph G and H are finite
graph, so |V(G)|, |V (H)|, x(G) and x(H) are finite. So, m;(G, H) <t < oo. Then, m;(G, H) is
finite. [

Theorem 2.2. For positive integers m and n, we have ma(K , K1) =m+n — 1.

Proof. We will show that mo (K, K1) > m + n — 1. We consider a red-blue coloring on the
edges of graph Ko (m+n—2) = F'r® Fp, such that Ff is a (m —1)—regular graph. By Handshaking
Lemma, it is possible since the sum of the degrees of the vertices of F'; is even. Then, Fr ;_5 Kim.
We have d(v) =m+n—2— (m—1)=n—1, forany v in Fz. Hence, Fp 2 K1 ,.

Now, we will show that msy (K m, K1) < m+n—1. We consider any red-blue coloring on the
edges of graph Koy (m4n—1) = Gr®Gp, such that Gg 2 K7 ,,. This implies that A(Gr) < m—1.

Therefore, 6(Gp) > m+mn—1— (m —1) =n. Then, G 2O K. O
Theorem 2.3. For positive integers m and n, we have
(%, form =2mod4,n=1,2
2| | + 2[4, form =2 mod 4,n = 3 mod 4,
2|m=L| 4 orn] orm = 4mod 4,n = 1 mod 4,
mB(Kl,m;Kl,n) — ml-_14 J . [4—| f B
T—i-[a—‘, form:lmodZ,nzl,
215 | +2[2] +1, form=2mod4,n+#3mod4,n >4,
2122 +2[2] + 1, form =4mod4,n#1mod 4.

Proof. Case 1. m3(Kym, K1,) =3, form =2mod4,andn = 1,2.
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For n = 1, we will use the property that ms(K ,,, K1) < ms(Kq,, K11). It is clear that
m3(K1m, K1) = 5. Therefore, ms(Kym, K11) > 5. If K3y m contains no a blue K, then
K3y m contains ared K7, since d(v) = m, for any v in K3xm . Hence, ma(Kym, K1) < 5.

For m = n = 2, it is clear that m3(Kym, K1,) > 5. Form = 6 mod 4 and n = 2, we
consider a red-blue coloring on the edges of graph K5, (= _1), such that K3, (= _;) contains a max-
imum blue matching graph. Since % — 1 is even, the blue graph is a 1—regular graph. This implies
that graph Kgx(%,l) contains red (m — 3)—regular graph. So Kgx(%,l) contains no a red K ,.
Then, m3 (K, K12) > 5. Furthermore, we consider any red-blue coloring on the edges of graph
K3 m, such that graph K3, = contains no a blue K 5. This implies that the maximum degree of
blue graph is 1. Since % is odd, then there is at least one vertex v, where d(v) = 0 in blue graph
and d(v) = m in red graph. Then, K3xm contains ared K ,,,. Therefore, mg (K1, K12) < 3.

Case 2. For (m = 2mod 4 and n = 3 mod 4), let t = 2| ™| + 2[2] and for (m = 4 mod 4 and
n=1mod4), lett = 2| 21| +2[2].

We consider a red-blue coloring on the edges of graph K3, (;—1) = Fr @ Fp, such that d(v,) =
m — 2, for a vertex v; € V(Fg) and d(v) = m — 1, for any v € V(FRr) — {v, }. By Handshaking
Lemma, it is possible since the sum of the degrees of the vertices of F' is even. Then, Fr 2 Kim.
We distinguish the following two cases, to show that ms(K ,,, K1 ,) > t.

Case a. For m = 2 mod 4 and n = 3 mod 4.

We have d(vy) = 2t—m = 4|52 | +4[2] —m =m—2+n+1—m =n—1,forv, € V(Fp)
andd(v) =2t —m—1=4["F]+4[2]—-m—-1=m—-2+n+1—m—1=n—2, forany
v e V(Fg) —{vi}. Then, Fg 2 K.

Case b. Form =4 mod 4 and n = 1 mod 4.

We have d(vi) = 2t —m = 4|22 | +4[2] —m =m—4+n+3—m =n—1,forv, € V(Fp)
andd(v) =2t —m—1=4["H] +4[2] —m—1=m—4+n+3—m—1=n—2 forany
v e V(Fg) —{v}. Then, Fg 2 K.

Now, we consider any red-blue coloring on the edges of graph Ks.; = Gr & Gp, such that
Gpr ;_b K ,,. This implies that A(Gr) < m — 1. We distinguish the following two cases, to show
that ms (K, K1) < t.

Case a. For m = 2 mod 4 and n = 3 mod 4.

8(Gp)>2t—(m—1)=2t—m+1=m—1+2[5] —m+1=n+1, since n is odd. Then,
GB 2 Kl,n-

Case b. Form =4 mod 4 and n = 1 mod 4.

6(Gp) =2t—(m—1) =2t—m+1 =4[] +4[2 ] —m+1=m—4+n+3—-m+2 =n.
Therefore, G O K .

Case 3. Form = 1mod2andn > 1, lett = % + [27 for m = 2 mod 4 and n # 3 mod 4, let
t=2["H]4+2|2|+1, and form =4mod4andn # 1 mod 4, lett = 2| =1 | + 2[2] + 1.

We consider a red-blue coloring on the edges of graph K3, (1) = F'r ® F'g, such that F is
a (m — 1)—regular graph. By Handshaking Lemma, it is possible since the sum of the degrees of
the vertices of F is even. Then, Fg 2 K ,,. We have d(v) = 2(t — 1) — (m — 1). We distinguish
the following three cases, to show that ms(Ky ,,, K1,) > t.

112



On size multipartite Ramsey numbers for stars | A. Lusiani, E. T. Baskoro and S. W. Saputro

Case a. Form =1 mod 2 dann > 1.

dv) =2t —m—-1=m—1+2[3] —m —1 = 2[5] —2 < n, for any v in Fp. Then,
Fp D Ki,.

Case b. For m = 2 mod 4 and n # 3 mod 4.

dv) =2t—m—1=4["2|+4|2|+2—m—-1=m—2+4[2| —-m+1=4|2]| -1 <n-1,
for any v in Fig. Then, Fg 2 K.

Case c¢. For m = 4 mod 4 and n # 1 mod 4.

dv)=2t—m—1=4]22] +4[2]+2-m—1=m—4+4[2] —m+1=4[2] -3 <n,
for any v in Fig. Then, Fz 2 K .

Now, we consider any red-blue coloring on the edges of graph K3, = Gr & Gp, such that
Gr 2 K. This implies that A(Gr) < m — 1. We distinguish the following three cases, to show
that ms (K, K1) < t.

Casea. Form = 1mod2dann > 1.

0(Gp) >2t—(m—1)=2t—m+1=m—14+2[5]—m+1=2[5] > n.Then, Gp D Ky,.

Gr? K3 Gp2 Ky

Figure 1. A coloring for ms (K 3, K1) = 4.

For m and n are both even, suppose that d(v) = m — 1, for any v in G. Then, the sum of the
degrees of the vertices of G is odd. By Handshaking Lemma, it is a contradiction. Then, there is
at least one vertex v; in G g such that d(v,) = m — 2. We consider v; in G for the following two
cases.

Case b. For m = 2 mod 4 and n # 3 mod 4.

d(v)) =2t—m+2 =42 ] +4[2|+2—-m+2=m—2+4[2] —m+4=4[2]+2 > n.

Case c. For m =4 mod 4 and n # 1 mod 4.

dlv)) =2t —m+2=422 | +4[2]+2-m+2=m—4+4[2] —m+4=4[2] > n.

Therefore, there is a star K ,, in G g, where v; as the center. O
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Gr 2 K4 Gp D K ,(6<n<8)

Figure 2. A coloring for mg(K1,4, K1) =5,(6 <n < 8).

Theorem 2.4. For positive integers m and n, we have
mg(mKLn, Cg) Z ’I’L’V%W + L%J

Proof. Lett = n[%] + |%§]. We will show that mz(mK,,,Cs) > t. Let A, B and C be three
partite sets in graph K3, (;_1). We consider a red-blue coloring on the edges of graph K3, (;—1) =
Fr @ Fp such that Fg = K, 151y, where the first partite set is A and the second partite set
is B U C. This implies that Fr = Ky, ;—1), where the partite sets are B and C. If m is even,
then [V(Fg)| = 2(t — 1) = 2(n[%] + [5] —1) = m(n +1) = 2 < |[V(mK,,)|. Therefore,
Fr 2 mKy,. Ifm =1, then Fr = Ksy(,—1). Itis clear that Fr 2 K;,. If m > 3 and m is odd,
then |B| = |C| = "(”;“) + 28 = m=l(n + 1) + 251, Hence, Fy only contains (m — 1)K,

2 2
Then, mg(mKLn, 03) Z t. ]
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