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Abstract

In a quite general sense, additive vertex labelings are those functions that assign nonnegative in-
tegers to the vertices of a graph and the weight of each edge is obtained by adding the labels of
its end-vertices. In this work we study one of these functions, called harmonious labeling. We
calculate the number of non-isomorphic harmoniously labeled graphs with n edges and at most
n vertices. We present harmonious labelings for some families of graphs that include certain
unicyclic graphs obtained via the corona product. In addition, we prove that all n-cell snake polyi-
amonds are harmonious; this type of graph is obtained via edge amalgamation of n copies of the
cycle C3 in such a way that each copy of this cycle shares at most two edges with other copies.
Moreover, we use the edge-switching technique on the cycle C4t to generate unicyclic graphs with
another type of additive vertex labeling, called strongly felicitous, which has a solid bond with the
harmonious labeling.
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1. Introduction

An additive vertex labeling of a graph G of order n and size m is an injection from the vertex
set of G into a set S (usually) of nonnegative integers, where each edge uv of G receives a weight
defined as f(u) + f(v). Several types of additive vertex-labelings have been studied over the
last decades, harmonious labeling is among the most investigated. This labeling was introduced
by Graham and Sloane in 1980 [16]. A graph G of size m is said to be harmonious if there
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exists an injective function f : V (G) → Zm such that when each edge uv of G is assigned the
weight f(u) + f(v) reduced modulo m, the resulting weights are different, that is, they form the
set Zm = {0, 1, . . . ,m − 1}. By extension, the function f is also called harmonious. In Figure
1 we show an example of a harmoniously labeled graph together with its (extended) adjacency
matrix. When G is a tree, exactly one label may be used on two vertices. Graham and Sloane
[16] conjectured that all trees are harmonious. In this direction, Figueroa-Centeno et al. [12]
presented an interesting relationship between these labelings and the most restrictive difference
vertex labeling, known as α-labeling. They proved that any tree that admits an α-labeling also
admits a harmonious labeling.
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Figure 1. Harmonious labeling of a graph of order 5 and size 8, and its extended adjacency matrix

Theorem 1.1. If T is an α-tree, then T is harmonious.

Since α-labelings has been extensively studied, many families of graphs (trees) are known to
accept an α-labeling. Thus, Theorem 1.1 enlarges the number of known families of harmonious
trees. Unfortunately, the converse of this theorem is false, there are trees that are harmonious but
do not admit an α-labeling, the smallest of these trees is the one obtained by subdividing every
edge of the star K1,3 exactly once. The reader interested in graph labelings is referred to [14] and
[19].

Some of the general properties of harmonious graphs, proved by Graham and Sloane [16] are
given below. In particular, theorems 1.3 and 1.4 are two methods to construct new harmonious
graphs.

Theorem 1.2. If f is a harmonious labeling of a graph of size m, then so is af + b, where a is an
invertible element of Zm and b is any element of Zm.

Corollary 1.1. Any vertex in a harmonious graph can be assigned the label 0. Moreover, the
repeated label in a harmonious tree can be any element of Zm.
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Theorem 1.3. Let G be a harmoniously labeled graph containing (i) an edge uv of weight w, and
(ii) a pair of vertices x, y not connected by an edge but satisfying f(x) + f(y) = w. Then deleting
the edge uv and inserting xy changes G to another harmonious graph.

Theorem 1.4. Let T be a harmoniously labeled tree containing an edge uv of weight w, where
v is a leaf and f(v) is the repeated label. If x is any other vertex in T , we may delete the edge
uv and the vertex v and replace them with a new vertex y and edge xy where y is labeled with
f(y) = w − f(x).

In this work, we use these properties several times. Another result proved in [16] says that
almost all graphs are not harmonious; in Section 2 we determine the number of harmoniously
labeled graphs with as many vertices as edges. This number grows exponentially with the size of
the graph.

We know the existence of at least three books whose major subject are additive vertex labelings,
in particular those of the magic type (see [2], [19], and [25]). López and Muntaner-Batle [19]
devoted in their work an entire chapter to harmonious labelings. Among the questions asked in
[19] we have the following:

1. Are all lobsters harmonious?
2. Which unicyclic graphs are harmonious?

In Section 3, we use the corona product of two graphs to give partial answers to both questions.
We prove that a harmonious lobster is obtained by attaching a pendant vertex to every vertex of a
caterpillar if the difference of the cardinalities of the two stable sets of the caterpillar is at most one.
Using caterpillars, we prove that any hairy cycle with odd girth is harmonious, that is, an odd cycle
with pendant vertices attached to some of its vertices. As a corollary, we obtain a harmonious
labeling of the corona between Cn and mK1 when n is odd. We use a more restrictive kind of
harmonious labeling to prove that if a graph G admits this type of labeling, then so does its corona
with K1.

In [4], Barrientos and Minion proved that all snake polyominoes admit a harmonious labeling.
Polyiamonds are a different version of Golomb’s polyominoes. A n-cell snake polyiamond is a
graph formed with n copies of the cycle C3 using edge amalgamation, in such a way that every
triangle shares at most two edges. In Section 4 we present a harmonious labeling of these snakes.
The labeling obtained satisfies the conditions to construct a harmonious labeling of the corona of
any of these snakes and K1.

In the last two sections we study additive vertex labelings, similar to the harmonious labelings,
for the disjoint union of two harmonious graphs and for a family of unicyclic graphs obtained
by switching edges of any cycle of size divisible by four. In Section 5 we extend the definition
of harmonious labeling, given in [16], to include all graphs of order n and size n − 1. Trees
fit in this category and as in the definition of harmonious labeling given by Graham and Sloane
[16], we accept the repetition of exactly one label. With this extension, we prove that G ∪ K1,m

is harmonious provided that G is sequential. In Section 6 we use the harmonious labeling of a
path, given in [16], to construct a strongly felicitous labeling for any unicyclic graph obtained
conveniently connecting n ≡ 0(mod 4) copies of the path Pm. A strongly felicitous labeling is
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essentially the same that a harmonious labeling except that the largest label used is one unit larger
than the size of the graph.

All graphs considered in this work are finite, with no loops nor multiple edges. All graph
theoretical notation not given here is taken from [11] and [14].

2. Enumerating Harmoniously Labeled Graphs

All graphs considered in this section have size n and order at most n. Suppose that G is a
harmonious graph of size n and order at most n. Let f be a harmonious labeling of G. The
adjacency matrix of G associated to this labeling can be embedded in the addition table of the
additive group Zn. This embedding of the adjacency matrix of the graph in the addition table
is what we call extended adjacency matrix. The facts that G is a graph with no loops and its
adjacency matrix is symmetric tell us that all the adjacencies of G can be seen in the upper right
triangle within the addition table. We can observe these properties in the addition table of Z8 given
in Figure 1.

Since Zn is an additive group, its addition table has exactly n cells, cij , such that i+ j = n. We
want to determine the number of these cells that satisfy the additional condition i < j.

Suppose that n is odd. Note that for each k ∈ Zn, there is one cell in the main diagonal, that
is, a cell of the form cii, such that i+ i = k. This implies that there are exactly n− 1 cells cij , with
i 6= j where i+ j = k. Therefore, n−1

2
of these cells satisfy the condition i < j.

Suppose that n is even. In this case, the main diagonal only contains even numbers. Thus, if
k ∈ Zn is even, the cells cii, where i = k

2
and i = n

2
+ k

2
, contain the integer k. Hence, for each

even value of k, there are n− 2 cells cij , with i 6= j, such that i + j = k; and only n
2
− 1 of them

satisfy the condition i < j. When k is odd, among the n cells cij containing the integer k, only n
2

satisfy i < j.
Now that we have determined the frequency of each k ∈ Zn in the cells cij , with i < j, we may

determine how many harmoniously labeled graphs of size n and order at most n exist.

Theorem 2.1. The number a(n) of harmoniously labeled graphs of size n and order at most n is:

a(n) =



(
n− 1

2

)n

if n is odd,

(
n

2

)n
2
(
n

2
− 1

)n
2

if n is even.

Proof. In order to induce the weights 0, 1, . . . , n − 1, any harmonious labeling of a graph of size
n and order at most n assigns labels from Zn to the vertices of the graph. This implies that inside
the addition table of Zn, only one of the cells cij , with i < j, containing k ∈ Zn is selected; if cij
is the cell selected, then the vertex labeled i is connected to the vertex labeled j. In other terms,
this triangular arrangement contains all the possible adjacencies; then, no matter what is the graph
or its labeling, it is represented here.
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Suppose that n is odd; every k ∈ Zn appears n−1
2

times in this triangle, then there are
(
n−1
2

)n
possible ways to select n different numbers from this triangle, each of the extended adjacency
matrices obtained represents a different harmoniously labeled graph.

Similarly, when n is even, every even k ∈ Zn can be selected in n
2
− 1 different ways and every

odd k can be chosen in n
2

different forms. Thus, the number of different ways to select the n cells
in this triangle is given by

(
n
2

)n
2
(
n
2
− 1
)n

2 , and this is the number of harmoniously labeled graphs
of odd size n and order at most n.

In the following table we show the initial values of a(n). This is the sequence A329910 in the
On-line Encyclopedia of Integer Sequences [6].

Table 1. Number of harmoniously labeled graphs of size n and order at most n

n a(n) n a(n) n a(n)

1 0 2 0 3 1
4 4 5 32 6 72
7 2187 8 20736 9 262144
10 3200000 11 48828125 12 729000000
13 13060694016 14 230539333248 15 4747561509943
16 96717311574016 17 2251799813685250 18 51998697814229000

3. Harmonious Graphs with Pendant Vertices

Let G and H be graphs, the corona of G and H , denoted by G �H , is the graph obtained by
taking one copy of G and as many copies of H as vertices in G and connecting, with an edge, the
ith vertex of G to every vertex in the ith copy of H . If H ∼= mK1, then G�mK1 is a graph with
pendant edges. A known family of harmonious graphs is the result of the corona of Cn and K1.
Grace [15] showed that Cn �mK1 is harmonious when n is odd; Liu and Zhang [18] proved that
Cn � K1 is harmonious when n is even. These graphs can be described as unicyclic graphs. A
graph is said to be unicyclic if it has exactly one cycle, the length of this cycle is the girth of the
graph; when it is connected, the graph has the same amount of vertices and edges and this implies
that it contains at least three edges such that the deletion of any of them result in a tree. The interest
in the study of graceful and harmonious labelings of unicyclic graphs can be traced to the works
of Truszczyński [24] and Grace [15]. In [3], Barrientos proved that all cycles with pendant edges
are graceful. Recently, Sethuraman and Murugan [23] presented new types of graceful unicyclic
graphs. We are not aware of new results related to harmonious labelings of this kind of graphs.

In the following proposition, we study a family of unicyclic graphs that includes the coronas
Cn�mK1 when n is odd. We prove that for any odd value of n ≥ 3, the graph obtained attaching
any number of pendant edges to all or some vertices of the cycle Cn is a harmonious graph.

Firstly, some basic definitions. A leaf in a graph is a vertex of degree one. A caterpillar is a
tree such that the removal of its leaves result in a path, which is called the spine of the caterpillar. A
lobster is a tree such that the removal of its leaves produces a caterpillar, the spine of the underlying

38



www.ijc.or.id

On additive vertex labelings | C. Barrientos

caterpillar is the spine of the lobster. A unicyclic graphG, other than a cycle, is called a hairy cycle
if the deletion of any edge in the cycle results in a caterpillar. To label the vertices of G we use the
π-representation of bipartite graphs introduced by Rosa [21] and later used, among other authors,
by Kotzig [17] and Cattell [9]. In this representation, the vertices of G are arranged in two lines
in such a way that each line contains all the vertices of one stable set of V (G) and the edges
connecting the vertices never cross. In Figure 2 we show the π-representation, providing a scheme
of the harmonious labeling of caterpillars as given in [16]; Rosa [21] also used this representation
for the α-labeling of these trees.

0 1 2 3 s

s+ 1 s+ 2 s+ 3 n− 1

Figure 2. π-representation of a labeled caterpillar

Theorem 3.1. If G is a hairy cycle with odd girth, then G is harmonious.

Proof. Let G be a hairy cycle of size n with odd girth. There exists uv ∈ E(G) such that G′ =
G − e is a caterpillar. Since G′ is bipartite, it can be drawn using the π-representation in such a
way that u and v are located in the opposite extremes of one of the two lines of the arrangement;
note that this happens because G has odd girth. The labeling of G′, shown in Figure 2, assigns the
labels 0, 1, . . . , n− 1 to the vertices of G′. The labels 0 and s are assigned to u and v, respectively.

Reading the diagram from left to right, the labels on each line are in ascending order; this
implies that the edges of G′ have weights s+ 1, s+ 2, . . . , s+ n− 1. If we reconnect the vertices
u and v (the red edge in the diagram) the edge e = uv has weight s. In other terms, the labeling
of G induces n different weights, which are consecutive integers. Therefore, if these integers are
reduced modulo n, we obtain the elements of Zn and the labeling of G is harmonious.

In Figure 3 we show an example of this labeling where G has size 20, girth 11, and s = 6, the
edge e = uv is represented in red.

As a consequence of this theorem we get Grace’s result about the harmonious labeling of
Cn �mK1 [15].

Corollary 3.1. For every m ≥ 1 and n ≥ 3 odd, the corona Cn �mK1 is a harmonious graph.

We say that a tree is neutral if the difference of the cardinalities of its stable sets is at most
one. In the following result we prove that a harmonious neutral caterpillar can be extended to a
harmonious neutral lobster. In order to prove our claim, we use the labeling scheme of a caterpillar
exhibited in Figure 2.
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Figure 3. Harmonious labeling of a unicyclic graph

Theorem 3.2. Let G be a caterpillar of size n. If G is neutral, then G�K1 is harmonious.

Proof. Suppose that G is a neutral caterpillar of size n with stable sets A and B such that a =
|A| ≥ |B| = b. Before labeling G, we draw the graph using the π-representation given in Figure
2. Starting on the left side, the elements of A are assigned the labels 0, 1, . . . , a− 1, in a sequential
manner; similarly, the vertices of B receive the labels a, a + 1, . . . , n. In this way, the weights
induced on the edges of M are a, a+ 1, . . . , a+ n− 1.

The assignment of labels to the n + 1 pendant vertices depends on whether a equals b or not.
Suppose that a = b. The pendant vertices adjacent to the elements of B are labeled with the
integers n + 1, n + 2, . . . , n + b; those adjacent to the elements of A are labeled with the integers
n+ b, n+ b+1, . . . , n+2b− 1. Since a = b and a+ b− 1 = n, the last (or largest) label assigned
to one of these vertices is 2n. Thus, the pendant edges incident to the vertices in A have weights
a+n, a+n+2, . . . , 2n+a−1; the others pendant edges have weights a+n+1, a+n+3, . . . , 2n+a.

Suppose now that a = b + 1. In this case, the pendant vertices adjacent to the vertices of B
are labeled with the integers n + 1, n + 2, . . . , n + b, while the other pendant vertices are labeled
n+ a, n+ a+ 1, . . . , 2n+ 1. The weights of the pendant edges incident to the elements of A are
n + a, n + a + 2, . . . , 2n + a. On the other side, the pendant edges have weights n + a + 1, n +
a+ 3, . . . 2n+ b = 2n+ a− 1.

Hence, the labels assigned to the vertices ofG�K1 are 0, 1, . . . , 2n+1 (where the label 2n+1
must be reduced modulo 2n+1) and the induced weights are a, a+1, . . . , 2n+1. When the label
2n+1 is reduced modulo 2n+1, the edge of weight 2n+ a has weight a− 1; i.e., the weights are
2n + 1 consecutive integers and the labeling of the corona between the neutral caterpillar G and
K1 is harmonious.

We show a couple of examples in Figure 4, the first one for the case where a = b and the second
one for the case where a > b.

Since the maximum distance from any vertex ofG�K1 to the spine ofG is two, the treeG�K1

is in fact a lobster. Thus, Theorem 3.1 partially answers the question posed in the Introduction
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Figure 4. Harmonious labeling of G�K1, where G is a neutral caterpillar

about the harmoniousness of lobsters. Taking under consideration the characteristics of this lobster,
the last theorem could be written in the following terms.

Theorem 3.3. If L is a neutral lobster of odd size such that every vertex is a leaf or adjacent to
exactly one leaf, then L is harmonious.

The upcoming propositions involve the two specific results that can be found in [16]. There,
Graham and Sloane showed the harmonious labeling for two graphs constructed using graph op-
erations. In particular, they proved that the fan Fn = Pn +K1 and the ladder Ln = Pn ×K2 are
harmonious graphs. In the following propositions we prove that when n is odd, both Fn �K1 and
Ln�K1 are harmonious graphs. The harmonious labeling of Fn and Ln used in the proofs of these
propositions are the labelings given by Graham and Sloane [16], so we do not prove here that fact.

Recall that for n ≥ 2, the fan Fn is obtained by joining all the vertices of the path Pn to a new
vertex, called the center; that is, Fn = Pn + K1. For n = 2t + 1, the fan Fn is a graph of order
2t+ 2 and size 4t+ 1.

Proposition 3.1. For every odd value of n ≥ 1, the corona Fn �K1 is harmonious.

Proof. When n = 1, the fan F1 is the path P2 which implies that it is harmonious. The harmonious
labeling of F3 is shown in Figure 5 inside the labeling of F3 � K1. Let t ≥ 2 be an integer such
that n = 2t + 1. Suppose that f is the harmonious labeling of F2t+1 given in [16]. That is, if
v1, v2, . . . , v2t+1 are the consecutive vertices of P2t+1 and v0 is the center of F2t+1, then

f(vi) =



0 if i = 0,

t+
i− 1

2
if i is odd,

2t+
i

2
if i is even.

For each i ∈ {0, 1, . . . , 2t + 1}, let ui be the pendant vertex adjacent to vi. We extend the
labeling f to include these vertices, according to the following rule:
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f(ui) =



t− 1 if i = 0,

4t+
i+ 1

2
if i is odd,

3t+
i

2
if i > 0 is even.

Recall that when f is restricted to F2t+1, it is harmonious, which implies that if the induced
weights are not reduced modulo 4t+1, they are t, t+1, . . . , 5t. The edge u0v0 has weight t−1 and
for each i ∈ {1, 2, . . . ,m}, the edge uivi has weight 5t+i; in other terms, 5t+1, 5t+2, . . . , 7t+1.
Then, the set of weights induced by f on the edges of F2t+1 �K1 is {t − 1, t, . . . , 7t + 1}; i.e., a
set with 6t + 3 = 3(2t + 1) = 3n elements. Since the assignment of labels is injective and all the
labels are in the range {0, 1, . . . , 5t + 1} and 5t + 1 is smaller that the size 6t + 3 of F2t+1 �K1,
we conclude that f is a harmonious labeling of this graph.

In Figure 5 we show the harmonious labelings of F3 � K1 and F7 � K1 obtained using the
labeling given in the proof of the above proposition. The harmonious labeling of F3 was taken
directly from [16].
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Figure 5. Harmonious labeling of F3 �K1 and F7 �K1

In the next proposition we prove that the corona L2t+1 � K1 is harmonious. This graph has
order 8t+ 4 and size 10t+ 3.

Proposition 3.2. The corona L2t+1 �K1 is harmonious.

Proof. Suppose that V (L2t+1) = {vi : 1 ≤ i ≤ 4t + 2} and E(L2t+1) = {vivi+1 : 1 ≤ i ≤
2t} ∪ {vivi+1 : 2t + 2 ≤ i ≤ 4t + 1} ∪ {viv2t+1+i : 1 ≤ i ≤ 2t + 1} . We use the harmonious
labeling of the vertices of L2t+1 given in [16]. Thus,
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f(vi) =



i− 1

2
if 1 ≤ i ≤ 2t+ 1 is odd,

t+
i

2
if 2 ≤ i ≤ 2t is even,

t+
i− 1

2
if 2t+ 3 ≤ i ≤ 4t+ 1 is odd,

2t+
i

2
if 2t+ 2 ≤ i ≤ 4t+ 2 is even.

Therefore, the vertices of the ladder are labeled with the integers 0, 1, . . . , 4t + 1; the induced
weights are t+ 1, t+ 2, . . . , 7t+ 1.

For each i ∈ {0, 1, . . . , 4t + 1}, we denote by ui the pendant vertex attached to the vertex of
L2t+1 labeled i. We extend f to the vertices ui in the following form:

f(ui) =

{
7t+ 3 + i if 0 ≤ i ≤ 2t,

3t+ i if 2t+ 1 ≤ i ≤ 4t+ 1.

Clearly, this extension of f is injective and its range is {5t+1, 5t+2, . . . , 9t+3}− {7t+2}.
Furthermore, for each i ∈ {0, 1, . . . , 2t}, the edge incident to ui has weight 7t+ 3 + 2i. So, these
pendant edges have weights 7t+3, 7t+5, . . . , 11t+3. For each i ∈ {2t+1, 2t+2, . . . , 4t+1}, the
edge incident to ui has weight 3t+2i. In this case, the weights obtained are 7t+2, 7t+4, . . . , 11t+2.

Hence, the labels assigned by f on the vertices of L2t+1�K1 are in the range {0, 1, . . . , 9t+3}
and the induced weights are t+ 1, t+ 2, . . . , 11t+ 3. Therefore, f is a harmonious labeling of the
corona L2t+1 �K1.

In the Figure 6 we show these labeled graphs for the cases t = 1, 2, 3.

7 6 8 13 11 14 12 15 19 16 20 17 21 18 22

4 3 5 7 5 8 6 9 10 7 11 8 12 9 13

0 2 1 0 3 1 4 2 0 4 1 5 2 6 3

10 12 11 17 20 18 21 19 24 28 25 29 26 30 27

Figure 6. Harmonious labeling of the corona L2t+1 �K1
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4. The n-Cell Snake Polyiamonds

Polyiamonds are geometrical shapes constructed from unit equilateral triangles (or the cycle
C3 from a graph theoretical perspective) joined edge-to-edge on a triangular grid. Here, we are
interested into n-cell snake polyiamonds, i.e., those shapes where each, of n triangles, shares at
most two edges with other triangles.

Related to snake polyiamonds is the concept of rigid ladder introduced by the Agnarsson and
Greenlaw [1]. Here, we extend their definition. We say that a graphG of order 2n is a (generalized)
rigid ladder if its vertex set is {ui, vi : 1 ≤ i ≤ n} and its edges are, for every 1 ≤ i ≤ n, of the
form uivi, and for every 1 ≤ i ≤ n−1, of the forms uiui+1, ui+1vi, and either uivi+1 or ui+1vi, but
not both. In other terms, G is obtained from the ladder Ln by adding for each square a "diagonal",
either ascending or descending. In [1] all the diagonals are parallel. This generalized version of
the original definition was given in [8]. There, we defined what is a rigid grid in exactly the same
way that we did with the ladders. That is, a rigid grid is the graph obtained from Pm × Pn by
adding a diagonal for each square. We calculated the number of non-isomorphic rigid grids for
every m ≥ 2 and n ≥ 2. The number of non-isomorphic rigid ladders of order 2n + 2, that is,
those formed from Pn+1 × P2, is

a(n) = 2n−2 + 2b
n
2
c−1

The sequence A005418 in OEIS [6] is formed by the consecutive values of a(n). All the rigid
ladders of order 2n+2 correspond to n-cell snake polyiamonds; however, there are snakes that are
not rigid ladders, for instance, the snakes on the second row of Figure 7. Then, the number a(n)
can be understood as a lower bound for the number of non-isomorphic n-cell snake polyiamonds.

Suppose that G is a n-cell snake polyiamond. Thus, G is an outerplanar graph of order n + 2
and size 2n + 1 whose dual graph is the fan Fn. The vertices of G can be colored with two
colors, say red and black, in such a way there are no monochromatic cells in G. Consequently, the
vertices of G can be organized in two monochromatic paths: Pbn+2

2
c containing the red vertices,

and Pdn+2
2
e containing the black vertices. If the consecutive black vertices are v1, v2, . . . , vdn+2

2
e

and the consecutive red vertices are u1, u2, . . . , ubn+2
2
c, we assume that u1v1 and ubn+2

2
cvdn+2

2
e are

edges of G. In the next theorem we prove that all n-cell snake polyiamonds are harmonious.

Theorem 4.1. For every n ≥ 1, the n-cell snake polyiamond is a harmonious graph.

Proof. Suppose that G is a n-cell snake polyiamond. Let f be a labeling of the vertices of G
defined as f(vi) = 2i − 2 for each 1 ≤ i ≤ dn+2

2
e and f(uj) = 2j − 1 for each 1 ≤ j ≤ bn+2

2
c.

Clearly, f is an injective function which range is {0, 1, . . . , n + 1}. Note that the label n + 1 is
located on a red vertex when n is odd and on a black vertex when n is even.

Since the black vertices are labeled with consecutive even numbers, the weights induced by
f on the edges of Pdn+2

2
e are consecutive integers congruent to 2 (mod 4). On the other side,

the red vertices are labeled with consecutive odd numbers, so the weights of the edges of Pbn+2
2
c

are consecutive integers congruent to 0 (mod 4). The remaining edges of G have end-vertices of
different colors, which implies that their weights are odd numbers. Regardless the parity of n, the
edge u1v1 has weight 1 and the weight of ubn+2

2
cvdn+2

2
e is 2n+ 1.
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Suppose that upvq and urvs are two of these edges. Their weights are:

f(up) + f(vq) = (2p− 1) + (2q − 2) = 2(p+ q)− 3

and
f(ur) + f(vs) = (2r − 1) + (2s− 2) = 2(r + s)− 3.

Since G is an outerplanar graph and the two edges are different, then one of the following holds:
(1) p < r and q < s, (2) p = r and q < s, or (3) p < r and q = s. Each of these conditions implies
that p+ q < r + s. Consequently, the weight of upvq is different of the weight of urvs. Therefore,
the weights of the edges with end-vertices of different colors are all the odd numbers from 1 up to
2n + 1. In addition, the weights of the edges with end-vertices of the same color are all the even
numbers from 2 up to 2n+ 2; that is, 0, 2, . . . , 2n (mod 2n+ 2).

Hence, f is a harmonious labeling of G.

In Figure 7 we show all the 6-cell snake polyiamonds labeled using the function described in
the proof.

0 2 4 6

1 3 5 7

0 2 4

6

1 3 5

7

0 2

4 6

1 3

5 7

0 2 4

6

1 3

5 7

0 2

4

6

1

3

5

7

Figure 7. Harmonious labelings of all 6-cell snake polyiamonds

Note that this labeling of the n-cell snake polyiamonds G assigns labels that are consecutive
integers, the same that the labelings of the fan Fn and the ladder Ln given before. Hence, using the
same type of argument it can be proved that the corona of G and K1 is a harmonious graph. We
omit the proof of this claim.

Proposition 4.1. If G is a n-cell snake polyiamond, then the corona G�K1 is harmonious.

5. Harmonious Labelings of Disconnected Graphs

In this section we present two results about harmonious labelings of disconnected graphs.
There are several results about this type of graph: Youssef [27] proved that the disjoint union
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of an odd number of copies of a harmonious graph is a harmonious graph. Seoud et al. [22] proved
that Cn∪Cn+1 is harmonious if and only if n ≥ 4. Yang et al. [26] showed that all C2n+1∪C2m are
harmonious except forC3∪C4. Renuka et al. [20] showed thatC2t+1∪P3 andC2t+1�mK1∪P3 are
harmonious. For more detailed information about harmonious labelings of disconnected graphs,
we refer the reader to Gallian’s survey [14].

Recall that in a harmonious labeling of a tree of size n, the labels are taken from Zn and exactly
one of them must be used twice. Trees are members of a larger family of graphs, the members of
this family are all the graphs of size n and order n + 1, we denote this family by D . We extend
the definition of harmonious labeling to include the elements of D , not only trees, that is, if G
is any harmonious graph of size n and order n + 1, then its vertices can be labeled with integers
from Zn and exactly one of the labels can be used twice. Among the elements of D we have all
disconnected graphs formed by the union of a unicyclic graph and a tree, we also have in D the
union of a 2-regular graph and a tree.

Grace [15] defined a sequential labeling of a graph of size q as an additive vertex-labeling with
range Zq, where the set of induced weights consists of q consecutive integers. A graph that admits
a sequential labeling is called sequential. In the following theorem we prove that if G ∈ D is
sequential, then the union of G and the star K1,m is a harmonious graph.

Theorem 5.1. Let G be a graph of order n and size n. If G is sequential, then G ∪ K1,m is
harmonious.

Proof. Note that the graph G ∪K1,m has order n +m + 1 and size n +m. This implies that any
harmonious labeling of this graph must repeat one label. Let f be a sequential labeling of G and
ω be the maximum weight induced by f . The vertex of degree m of K1,m is labeled ω + 1 − n
and the vertices of degree 1 are labeled with the integers n, n+ 1, . . . , n+m− 1. In this way, the
edges of K1,m have weights ω + 1, ω + 2, . . . , ω +m.

Therefore, the weights on the edges of G ∪ K1,m are n + m consecutive integers, that when
reduced (mod n + m) they are the elements of Zn+m. Since the labels on G are 0, 1, . . . , n − 1
and the labels on the vertices of K1,m are n, n + 1, . . . , n +m − 1 and ω + 1 − n, every label is
used exactly once except ω+1− n that is used on G and K1,m because ω cannot exceed the value
2n− 3. Consequently, the labeling of G ∪K1,m is harmonious.

Recall that in Theorem 3.1 we proved that all hairy cycles are harmonious. These graphs satisfy
the conditions of the previous theorem, therefore, its union with any star results in a harmonious
graph.

Corollary 5.1. If G is a hairy cycle, then G ∪K1,m is a harmonious graph.

In Figure 8 we show an example of the labeling in Theorem 5.1 for the graph C9 ∪K1,7.

6. Strongly Felicitous Unicyclic Graphs

Suppose that n ≡ 0(mod 4). Let P 1, P 2, . . . , P n be copies of the path Pm, with vertex set
V (P i) = {ui,j : 1 ≤ j ≤ m} and edge set E(P i) = {ui,jui,j+1 : 1 ≤ j < m}. Using these paths
we want to generate a unicyclic graph of order nm; to do so, for every i ∈ {1, 2, . . . , n − 1} we
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1 6 2 7 3

8405 4

9 10 11 12 13 14 15

Figure 8. Harmonious labeling of C9 ∪K1,7

select an index k ∈ {1, 2, . . . ,m} and connect the vertices ui,k and ui+1,k. When this process has
been done for every i ∈ {1, 2, . . . , n− 1}, the resulting graph is a tree because it is connected and
its size is n(m − 1) + n − 1 = nm − 1. Finally, in order to create a unicyclic graph a new edge
must be introduced. In our process, we have two ways to select the pair of vertices to be connected.
Assume that un

2
,kun

2
+1,k is an edge of this tree.

1. If k is even, then select any odd number j ∈ {1, 2, . . . ,m} other than k and connect un
2
,j

with un
2
+1,j . Since j 6= k, un

2
,jun

2
+1,j is a new edge and the resulting graph is unicyclic.

2. If k is odd, then we have two alternatives to build a unicyclic graph:
(a) Select any even number j ∈ {1, 2, . . . ,m} other than k and proceed as in the previous

case.
(b) Connect the vertices u1,1 and un,m. Since P 1 and P n were not connected before, the

new graph is unicyclic.

We denote by F the family of all unicyclic graphs of order nm obtained using the construction
described above. We claim that any graph in F admits another type of additive vertex labeling,
named strongly felicitous by Figueroa-Centeno et al. [13].

An injective function f from the vertices of a graph G with m edges to the set {0, 1, . . . ,m}
is called felicitous if the weights induced by f(u) + f(v) (mod m) for each edge uv are distinct.
If there exists and integer λ such that min{f(u), f(v)} ≤ λ < max{f(u), f(v)}, then f is called
strongly felicitous. In [13], the authors proved that a graph of order n and size m, with m ≥ n− 1,
is strongly felicitous if and only if it is an α-graph.

Every unicyclic graph satisfies this condition between order and size; therefore, proving that it
is an α-graph or strongly felicitous is equivalent. In [9], we proved the existence of an α-labeling
for a family of graphs that includes all unicyclic graphs where two vertices of Pn

2
are connected

with two vertices of Pn
2
+1 . In the following proposition we prove that all members of F are

strongly felicitous.
In order to facilitate the description of the unyclic graph and its labeling, we rename its vertices

according to the following formula:

φ(ui,j) =


v1,m(i−1)+j if i < n

2
is odd,

v1,mi+1−j if i ≤ n
2

is even,
v1,m(i−1)+j if i > n

2
is odd,

v1,mi+1−j if i > n
2

is even.
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Hence, independently of the parity of i or how it compares with n
2
, the values of m(i− 1) + j

and mi+ 1− j, for all j ∈ {1, 2, . . . ,m}, form a set of 2m consecutive integers. Therefore, φ is a
bijection. We use this bijection to define, in a more efficient way, the labeling of all the members
of F .

Proposition 6.1. If G ∈ F , then G is strongly felicitous.

Proof. To build our strongly felicitous unicyclic graphG, we start with two disjoint copies of Pnm
2

.
For each i ∈ {1, 2}, let Ri be the ith copy of Pnm

2
, where vi,1, vi,2, . . . , vi,m are its consecutive

vertices. We define a labeling f of R1 ∪R2 as follows:

f(vi,j) =



j − 1

2
if i = 1 and j is odd,

nm

2
+
j

2
if i = 1 and j is even,

nm

4
+
j + 1

2
if i = 2 and j is odd,

3nm

4
+
j

2
if i = 2 and j is even.

It is not hard to see that the labels on R1 and R2 are {0, 1, . . . , nm
4
− 1} ∪ {nm

2
+ 1, nm

2
+

2, . . . , 3nm
4
} and {nm

4
+ 1, nm

4
+ 2, . . . , nm

2
} ∪ {3nm

4
+ 1, 3nm

4
+ 2, . . . , nm}, respectively.

Suppose that i = 1. Independently of the parity of j, the weight of v1,jv1,j+1 is nm
2

+ j. This
implies that the weights induced on the edges of R1 are nm

2
+ 1, nm

2
+ 2, . . . , nm.

Suppose that i = 2. Similarly to the case i = 1, the weight of v2,jv2,j+1 is nm
2
+ j+1 no matter

the parity of j. Hence, the weights induced on the edges of R2 are nm+ 2, nm+ 3, . . . , 3nm
2

.
When v1,nm

2
is connected to v2,1, we obtain an edge of weight 3nm

4
= nm

4
+1 = nm+1. When

v1,1 is connected to v2,nm
2

, we get an edge of weight 0+ 3nm
4

+ nm
4

= nm. Thus, the graph acquired,
when these edges are added, is the cycle Cnm, which is a member of F . The labels used are in the
range {0, 1, . . . , nm} − {nm

4
} and the induced weights are nm

2
+ 1, nm

2
+ 2, . . . , 3nm

2
.

Now we use this labeled cycle to get our unicyclic graph G. Let 0 < k < nm
2

be any multiple
of m and s ∈ {1, 2, . . . ,m− 1}. Note that the edge v1,kv1,k+1 has weight nm

2
+ k and that

f(v1,k−s) + f(v1,k+1+s) =
k − s− 1

2
+
nm

2
+
k + 1 + s

2
=
nm

2
+ k.

This implies that the edge v1,kv1,k+1 can be replaced by the new edge v1,k−sv1,k+1+s and the new
graph has the same weights that Cnm. Similarly, on R2, the edge v2,kv2,k+1 has weight nm+ k+1
and

f(v2,k−s) + f(v2,k+1+s) =
nm

4
+
k − s+ 1

2
+

3nm

2
= nm+ k + 1.

Consequently, the edge v2,kv2,k+1 can be substituted by v2,k−sv2,k+1+s without affecting the set of
induced weights.
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With the edges v1,nm
2
v2,1 and v1,1v2,nm

2
we proceed in a slightly different way. First we must

observe that these edges have weights nm + 1 and nm, respectively. For every even value of
s ∈ {1, 2, . . . ,m}, the edge v1,nm

2
v2,1 can be replaced with v1,nm

2
−sv2,1+s because

f(v1,nm
2
−s) + f(v2,1+s) =

(
nm

2
+

1

2

(nm
2
− s
))

+

(
nm

4
+

1

2
(1 + s+ 1)

)
=
nm

2
+
nm

4
− s

2
+
nm

4
+ 1 +

s

2
= nm+ 1.

For every odd value of s ∈ {1, 2, . . . ,m}, the edge v1,1v2,nm
2

can be replaced with v1,nm
2
−sv2,1+s

seeing that in this case

f(v1,nm
2
−s) + f(v2,1+s) =

1

2

(nm
2
− s− 1

)
+

(
3nm

4
+

1 + s

2

)
=
nm

4
− s

2
− 1

2
+

3nm

4
+

1

2
+
s

2
= nm

If ui,jui+1,j is an edge of G and φ(ui,j)φ(ui+1,j) is not an edge of Cnm, then φ(ui,j)φ(ui+1,j)
must be used to replace the edge of Cnm that has the same weight. Since this replacement is always
possible (because s exists in each case) without modifying neither the labels nor the weights, we
conclude that the graph obtained after all the replacements are done is in fact G with a strongly
felicitous labeling, where the constant is λ = nm

2
.

In Figure 9 we show the fifteen (non-isomorphic) members of F obtained with this construc-
tion for n = 4 and m = 3. Since the labeling for each of them is the same, we show the labeling
of only one of these graphs.

7. Conclusions

We enumerated the harmoniously labeled graphs of size n and order at most n. It is an open
problem the enumeration of these labeled graphs when the order is n + 1, case that includes all
harmoniously labeled trees. We proved that for any odd cycle, attaching to some of its vertices any
number of pendant vertices results in a harmonious graph. Is it possible to attach pendant paths
instead of pendant vertices? We explored the corona of harmonious graphs and K1, in this line,
is it possible to replace K1 by mK1? We also proved that the union of a harmonious graph of
order and size equal to n with the start K1,m produces a harmonious graph. Could we replace the
star by any other tree? Two large families of harmonious graphs were introduced: n-cell snake
polyiamonds and unicyclic formed from the cycle C4t. Is it possible to build harmonious snakes
using other shapes? And, instead of C4t, could we use C2t with similar results?
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1 8 5 11

7 2 10 6

0 9 4 12

Figure 9. All non-isomorphic unicyclic graphs obtained with four copies of P3
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