

INDONESIAN JOURNAL OF COMBINATORICS

The forcing monophonic and the forcing geodetic numbers of a graph

J. John

Department of Mathematics, Government College of Engineering, Tirunelveli 627 007, India

john@gcetly.ac.in

Abstract

For a connected graph G = (V, E), let a set S be a m-set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique m-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing monophonic number of S, denoted by $f_m(S)$, is the cardinality of a minimum forcing subset of S. The forcing monophonic number of G, denoted by $f_m(G)$, is $f_m(G) = min\{f_m(S)\}$, where the minimum is taken over all minimum monophonic sets in G. We know that $m(G) \leq g(G)$, where m(G) and g(G) are monophonic number and geodetic number of a connected graph G respectively. However there is no relationship between $f_m(G)$ and $f_g(G)$, where $f_g(G)$ is the forcing geodetic number of a connected graph G. We give a series of realization results for various possibilities of these four parameters.

Keywords: geodetic number, monophonic number, forcing geodetic number, forcing monophonic number Mathematics Subject Classification : 05C12, 05C38 DOI: 10.19184/ijc.2020.4.2.5

1. Introduction

By a graph G = (V,E), we mean a finite undirected connected graph without loops or multiple edges. The *order and size* of *G* are denoted by *p* and *q* respectively. For basic graph theoretic terminology, we refer to Harary [1]. The *distance* d(u, v) between two vertices *u* and *v* in a connected graph *G* is the length of shortest u - v path in *G*. An u - v path of length d(u, v) is called an u - v

Received: 9 February 2020, Revised: 13 December 2020, Accepted: 26 December 2020.

geodesic. A vertex x is said to be lie a u - v geodesic P if x is a vertex of P including the vertices u and v. A geodetic set of G is a set $S \subseteq V$ such that every vertex of G is contained in geodesic joining some pair of vertices in S. The geodetic number q(G) of G is the minimum order of its geodetic sets and any geodetic set of order q(G) is a minimum geodetic set or simply a q-set of G. The geodetic number of a graph was introduced in [1] and further studied in [3, 4, 5, 7, 8, 9, 16, 17, 18, 20, 23, 25]. A subset $T \subseteq S$ is called a *forcing subset* for S if S is the unique q-set of G containing T. A forcing subset for S of minimum cardinality is a *minimum forcing subset* of S. The forcing geodetic number of S, denoted by $f_q(S)$, is the cardinality of a minimum forcing subset of S. The forcing geodetic number of G, denoted by $f_g(G)$, is $f_g(G) = min\{f_g(S)\}$, where the minimum is taken over all minimum g-sets of G. The forcing geodetic number of a graph was introduced in [3] and furthur studied in [19, 21, 22]. A *chord* of the path P is an edge joining to non-adjacent vertices of P. An u - v path P is called *monophonic path* if it is a chordless path. A monophonic set of G is a set $S \subseteq V$ such that every vertex of G is contained in a monophonic path joining some pair of vertices in M. The monophonic number m(G) of G is the minimum order of its monophonic sets and any monophonic set of order m(G) is a minimum monophonic set or simply a *m*-set of G. The monophonic number of a graph was introduced in [6] and further studied in [2, 6, 10, 11, 12, 13, 14, 15, 19, 24]. A vertex v is said to be *monophonic vertex* of G if v belongs to every minimum monophonic set of G. A vertex v is an *extreme vertex* of a graph G if the sub graph induced by its neighbours is complete. A vertex v is said to be geodetic(monophonic) vertex if v belongs to every q-set (m-set) of G. Every extreme vertices are geodetic(monophonic) vertices of G. In fact there are geodetic (monophonic) vertices which are not extreme vertices of G. Let Gbe a connected graph and S a m-set of G. A subset $T \subseteq S$ is called a *forcing subset* for S if S is the unique *m*-set of *G* containing *T*. A *forcing subset* for *S* of minimum cardinality is a minimum forcing subset of S. The forcing monophonic number of S, denoted by $f_m(S)$, is the cardinality of a minimum forcing subset of S. The forcing monophonic number of G, denoted by $f_m(G)$ is defined by $f_m(G) = \min \{f_m(S)\}$, where the minimum is taken over all *m*-sets *S* in *G*. The forcing monophonic number of a graph was introduced in [11]. The Throughout the following G denotes a connected graph with at least two vertices. The following theorems are used in the sequel.

Theorem 1.1. [4, 12] If v is an extreme vertex of a connected graph G, then v belongs to every geodetic (monophonic) set of G.

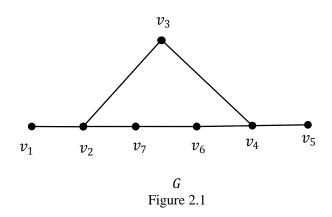
Theorem 1.2. [1, 12] For a connected graph G, g(G) = p (m(G) = p) if and only if $G = K_p$.

Theorem 1.3. [3, 11] Let G be a connected graph, then a) $f_g(G) = 0 = f_m(G) = 0$ if and only if G has a unique minimum geodetic (monophonic) set. b) $f_g(G) \le g(G) - |W|$, $(f_m(G) \le m(G) - |W|)$, where W is the set of all geodetic (monophonic) vertices of G.

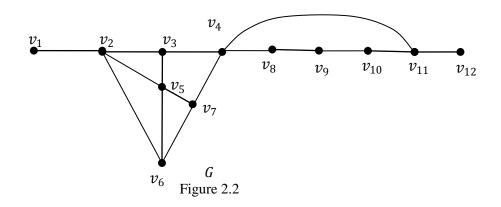
Theorem 1.4. [3, 11] For the complete graph $G = K_p$, $f_g(G) = f_m(G) = 0$.

2. The Forcing Monophonic and the Forcing Geodetic Numbers of a Graph

We know that $m(G) \leq g(G)$. From the following examples, we observe that there is no relationship between $f_m(G)$ and $f_g(G)$.



Example 2.1. For the graph G given in Figure 2.1, $M = \{v_1, v_5\}$ is the unique m-set of G so that $f_m(G) = 0$ and m(G) = 2. Also $S_1 = \{v_1, v_5, v_6\}$ and $S_2 = \{v_1, v_5, v_7\}$ are the only two g-sets of G such that $f_g(S_1) = f_g(S_2) = 1$ so that $f_g(G) = 1$ and g(G) = 3. Thus $f_m(G) < f_g(G) < m(G) < g(G)$.

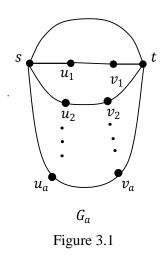


Example 2.2. For the graph G given in Figure 2.2, $M_1 = \{v_1, v_8, v_{12}\}$, $M_2 = \{v_1, v_9, v_{12}\}$ and $M_3 = \{v_1, v_{10}, v_{12}\}$ are the only three m-set of G so that $f_m(M_1) = f_m(M_2) = f_m(M_3) = 1$ so that $f_m(G) = 1$ and m(G) = 3. Also $S_1 = \{v_1, v_7, v_9, v_{12}\}$ is the unique g-set of G so that $f_g(G) = 0$ and g(G) = 4. Thus $f_g(G) < f_m(G) < m(G) < g(G)$.

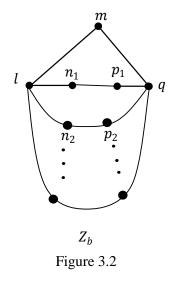
3. Special graphs

In this section, we present some graphs from which various graphs arising in theorem are generated using identification.

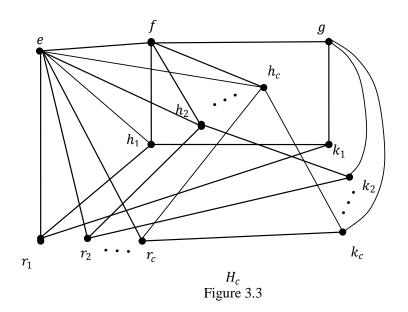
Let $P_i : u_i, v_i$ be a copy of paths on two vertices. Let G_a be the graph given in Figure 3.1 obtained from $P_i (\leq i \leq a)$ by introducing new vertices s, t and joining each $u_i (1 \leq i \leq a)$ with s and joining each $v_i (1 \leq i \leq a)$ with t and join s with t.



Let $P_i : n_i, p_i \ (1 \le i \le b)$ be a copy of path on two vertices and P : l, m, n be a path on three vertices. Let Z_b be the graph given in Figure 3.2 obtained from $P_i \ (1 \le i \le b)$ and P by joining each $n_i \ (1 \le i \le b)$ with l, each $p_i \ (1 \le i \le b)$ with q.



Let $P_i : r_i, h_i, k_i \ (1 \le i \le c)$ be a copy of path on three vertices and let P: e, f, g be a path on three vertices. Let H_c be the graph given in Figure 3.3 obtained from $P_i \ (1 \le i \le c)$ and P by joining e and f with each h_i and $r_i \ (1 \le i \le c)$, joining g with each $k_i \ (1 \le i \le c)$, joining $h_i \ (1 \le i \le c)$, joining $h_i \ (1 \le i \le c)$, and joining $r_i \ (1 \le i \le c)$ with $k_i \ (1 \le i \le c)$.



Let $U_i: x_i, y_i, w_i \ (1 \le i \le d)$ be the path on three vertices. Let R_a be the graph given in Figure 3.4 obtained from $U_i \ (1 \le i \le d)$ by adding new vertices u and v by joining u with v and joining each $x_i \ (1 \le i \le d)$ with u and joining each $w_i \ (1 \le i \le d)$ with v.

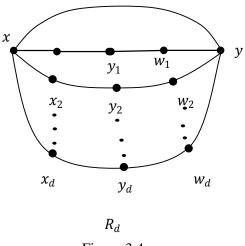


Figure 3.4

4. Some realization results

Theorem 4.1. For every pair a, b of integers with $0 \le a < b$ and $b \ge 2$, there exists a connected graph G such that $f_m(G) = f_g(G) = 0$, m(G) = a and g(G) = b.

Proof. If a = b, let $G = K_a$. Then by Theorem 1.2, m(G) = g(G) = a. Also by Theorem 1.3(a), $f_m(G) = f_g(G) = 0$. For $1 \le a < b$, let G be the graph obtained from H_{b-a} by adding new

vertices $x, z_1, z_2, ..., z_{a-1}$ and joining the edges $xe, gz_1, gz_2, ..., gz_{a-1}$. Let $Z = \{x, z_1, z_2, ..., z_{a-1}\}$ be the set of all end-vertices of G. Then it is clear that Z is a monophonic set of G and so by Theorem 1.1, Z is the unique m-set of G so that m(G) = a and hence by Theorem 1.3(a), $f_m(G) = 0$. Since the vertices h_i, k_i and r_i $(1 \le i \le b - a)$ does not lie on any geodesic joining a pair of vertices in Z, we see that Z is not a geodetic set of G. It is easily verified that every g-set of G contains each h_i $(1 \le i \le b - a)$ and so $g(G) \ge b$. Now it is easily seen that $W = Z \cup \{h_1, h_2, ..., h_{b-a}\}$ is the unique g-set of G and hence by Theorem 1.1 and Theorem 1.3(a) g(G) = b and $f_g(G) = 0$.

Theorem 4.2. For every integers a, b and c with $0 \le a < b < c$ and c > a + b, there exists a connected graph G such that $f_m(G) = 0$, $f_g(G) = a$, m(G) = b and g(G) = c.

Proof. Case 1. a = 0. Then the graph G constructed in Theorem 4.1 satisfies the requirements of this theorem.

Case 2. $a \ge 1$. Let G be the graph obtained from Z_a and $H_{c-(a+b)}$ by identifying the vertex q of Z_a and e of $H_{c-(a+b)}$ and then adding new vertices $x, z_1, z_2, ..., z_{b-1}$ and joining the edges $xl, gz_1, gz_2, ..., qz_{b-1}$. It is clear that Z is a monophonic set of G and by Theorem 1.1, Z is the unique m-set of G so that m(G) = b and hence by Theorem 1.3(a), $f_m(G) = 0$. Next we show that g(G) = c. Let S be any geodetic set of G. Then by Theorem 1.1, $Z \subseteq S$. It is clear that Z is not a geodetic set of G. For $1 \le i \le a$, let $Q_i = \{n_i, p_i\}$. We observed that every g-set of G must contain at least one vertex from each Q_i $(1 \le i \le a)$ and each h_i $(1 \le i \le c - b - a)$ so that $g(G) \ge b + a + c - a - b = c$. Now $W = Z \cup \{h_1, h_2, ..., h_{c-a-b}\} \cup \{n_1, n_2, ..., n_a\}$ is a geodetic set of G so that $g(G) \ge b + a + c - a - b = c$. Thus g(G) = c. Since every g- set contains $W_1 = Z \cup \{h_1, h_2, ..., h_{c-a-b}\}$ it follows from that from Theorem 1.3 (b) that $f_g(G) \le g(G) - |W_1| = c - (c - a) = a$. Now, since g(G) = c and every g-set of G contains W_1 , it is easily seen that every g-set S is of the form $W_1 \cup \{d_1, d_2, ..., d_a\}$ where $d_i \in Q_i$ $(1 \le i \le a)$. Let T be any proper subset of S with |T| < a. Then it is clear that there exists some j such that $T \cap Q_j = \Phi$, which shows that $f_g(G) = a$.

Theorem 4.3. For every integers a, b and c with $0 \le a < b \le c$ and b > a + 1 there exists a connected graph G such that $f_q(G) = 0$, $f_m(G) = a$, m(G) = b and g(G) = c.

Proof. Case 1. a = 0. Then the graph G constructed in Theorem 4.1 satisfies the requirements of this theorem.

Case 2. $a \ge 1$.

Subcase 2a. b = c. Let G be the graph obtained from R_a by adding new vertices $x, z_1, z_2, \ldots, z_{b-a-1}$ and joining the edges $xu, vz_1, vz_2, \ldots, vz_{b-a-1}$. Let $Z = \{x, z_1, z_2, \ldots, z_{b-a-1}\}$ be the set of all end-vertices of G. Let S be any geodetic set of G. Then by Theorem 1.1, $Z \subseteq S$. It is clear that Z is not a geodetic set of G. For $1 \le i \le a$, let $H_i = \{x_i, y_i, w_i\}$. We observe that every g-set of G must contain only the vertex y_i from each H_i $(1 \le i \le a)$ and so $g(G) \ge b - a + a = b$. Now $S = Z \cup \{y_1, y_2, y_3, \ldots, y_a\}$ is a geodetic set of G so that $g(G) \le b - a + a = b$. Thus g(G) = b. Also it is easily seen that W is the unique g-set of G and so $f_g(G) = 0$. Now it is clear that Z is not a monophonic set of G. We observe that every m-set of G must contain at least one vertex from each H_i $(1 \le i \le a)$. Hence by Theorem 1.1, $m(G) \ge b - a + a = b$. Now

 $W_1 = Z \cup \{y_1, y_2, y_3, \ldots, y_a\}$ is a monophonic set of G so that $m(G) \leq b - a + a = b$. Thus m(G) = b. Next we show that $f_m(G) = a$. Since every m-set contains Z, it follows from Theorem 1.3 (b) that $f_m(G) \leq m(G) - |Z| = b - (b - a) = a$. Now, since m(G) = b and every m-set of G contains Z, it is easily seen that every m-set S is of the form $Z \cup \{d_1, d_2, d_3, \ldots, d_a\}$, where $d_i \in H_i$ $(1 \leq i \leq a)$. Let T be any proper subset of S with |T| < a. Then it is clear that there exists some j such that $T \cap H_j = \Phi$, which shows that $f_m(G) = a$.

Subcase 2b. b < c. Let G be the graph obtained from R_a and H_{c-b} by identifying the vertex v of R_a and g of H_{c-b} and then adding the new vertices $x, z_1, z_2, \ldots, z_{b-a-1}$ and joining the edges $xu, gz_1, gz_2, \ldots, gz_{b-a-1}$. Let $Z = \{x, z_1, z_2, \ldots, z_{b-a-1}\}$ be the set of end vertices of G. Let S be any geodetic set of G. Then by Theorem 1.1 $Z \in S$. It is clear that Z is not a geodetic set of G. For $1 \le i \le a$, let $H_i = \{x_i, y_i, w_i\}$. We observe that every g-set of G must contain only the vertex y_i $(1 \le i \le a)$ from each H_i $(1 \le i \le a)$ and each h_i $(1 \le i \le c - b)$ and so $g(G) \ge b - a + a + c - b = c$ Now $W = Z \cup \{y_1, y_2, y_3, \dots, y_a\} \cup \{h_1, h_2, h_3, \dots, h_{c-b}\}$ is a geodetic set of G so that $g(G) \leq b - a + a + c - b = c$. Thus g(G) = c. Also it is easily seen that W is the unique g-set of G and so $f_q(G) = 0$. It is clear that Z is not a monophonic set of G. We observe that every m-set of G must contain at least one vertex from each H_i $(1 \le i \le a)$ and so $m(G) \ge b - a + a = b$. Now, $S_1 = Z \cup \{y_1, y_2, y_3, \dots, y_a\}$ is a monophonic set of G so that $m(G) \leq b - a + a = b$. Thus m(G) = b. Next we show that $f_m(G) = a$. Since every *m*-set contains Z, it follows from Theorem 1.3 (b) that $f_m(G) \le m(G) - |Z| = b - (b - a) = a$. Now, since m(G) = b and every *m*-set of *G* contains *Z*, it is easily seen that every *m*-set *S* is of the form $Z \cup \{d_1, d_2, d_3, \dots, d_a\}$, where $d_i \in H_i$ $(1 \le i \le a)$. Let T be any proper subset of S with |T| < a. Then it is clear that there exists some j such that $T \cap H_j = \Phi$, which shows that $f_m(G) = a.$

Theorem 4.4. For every pair a, b and c of integers with $0 \le a \le b \le c, b > a + 1$ there exists a connected graph G such that $f_q(G) = f_m(G) = a, m(G) = b$ and g(G) = c.

Proof. Case 1. a = 0, then the graph G constructed in Theorem 4.1 satisfies the requirements of this theorem.

Case 2. $a \ge 1$,

Subcase 2a. b = c. Let G be the graph obtained from G_a by adding new vertices $x, z_1, z_2, \ldots, z_{b-a-1}$ and joining the edges $xs, tz_1, tz_2, \ldots, tz_{b-a-1}$. Let $Z = \{x, z_1, z_2, \ldots, z_{a-b-1}\}$ be the set of end-vertices of G. First we show that m(G) = b. Let M be any monophonic set of G. Then by Theorem 1.1, $Z \subseteq M$. It is clear that Z is not a monophonic set of G. Let $F_i = \{u_i, v_i\}$ $(1 \leq i \leq a)$. We observe that every m-set of G must contain at least one vertex from each F_i $(1 \leq i \leq a)$. Thus $m(G) \geq b-a+a = b$. On the other hand since the set $W = Z \cup \{v_1, v_2, \ldots, v_a\}$ is a monophonic set of G, it follows that $m(G) \leq |W| = b$. Hence m(G) = b. Next we show that $f_m(G) = a$. By Theorem 1.1, every monophonic set of G contains Z and so it follows from Theorem 1.3(b) that $f_m(G) \leq m(G) - |Z| = a$. Now, since m(G) = b and every m-set of G contains Z, it is easily seen that every m-set S is of the form $Z \cup \{c_1, c_2, \ldots, c_a\}$, where $c_i \in F_i$ $(1 \leq i \leq a)$. Let T be any proper subset of S with |T| < a. Then it is clear that there exists some j such that $T \cap H_j = \Phi$, which shows that $f_m(G) = a$. By similar way we can prove g(G) = b and $f_q(G) = a$.

Subcase 2b. b < c. Let G be the graph obtained from G_a and H_{c-b} by identifying the vertex t of

 G_a and the vertex e of H_{c-b} and then adding the new vertices $x, z_1, z_2, \ldots, z_{b-a-1}$ and joining the edges $xs, gz_1, gz_2, \ldots, gz_{b-a-1}$.

First we show that m(G) = b. Let $Z = \{z_1, z_2, \dots, z_{b-a-1}\}$ be the set of all end-vertices of G. Since the vertices u_i, v_i do not lie on any monophonic path joining a pair of vertices of Z, it is clear that Z is not a monophonic set of G. Let $F_i = \{u_i, v_i\}$ $(1 \le i \le a)$. We observe that every m-set of G must contain at least one vertex from each F_i $(1 \le i \le a)$. Thus $m(G) \ge a$ b - a + a = b. On the other hand since the set $W = Z \cup \{v_1, v_2, v_3, \dots, v_a\}$ is a monophonic set of G, it follows that $m(G) \leq |W| = b$. Hence m(G) = b. Next, we show that $f_m(G) = a$. By Theorem 1.1, every monophonic set of G contains Z and so it follows from Theorem 1.3 (b) that $f_m(G) \leq m(G) - |Z| = a$. Now, since m(G) = b and every *m*-set of *G* contains *Z*, it is easily seen that every *m*-set S is of the form $Z \cup \{c_1, c_2, c_3, \ldots, c_a\}$, where $c_i \in F_i$ $(1 \le i \le a)$. Let T be any proper subset of S with |T| < a. Then it is clear that there exists some j such that $T \cap H_i = \Phi$, which shows that $f_m(G) = a$. Next we show that g(G) = c. Since the vertices $u_i, v_i, h_i \ (1 \le i \le a)$ do not lie on any geodesic joining a pair of vertices of Z, it is clear that Z is not a geodetic set of G. We observe that every g-set of G must contain each H_i $(1 \le i \le a)$ and each h_i $(1 \le i \le c - b)$ so that $g(G) \ge b - a + a + c - b = c$. On the other hand, since the set $S_1 = Z \cup \{h_1, h_2, h_3, \dots, h_{c-b}\} \cup \{u_1, u_2, \dots, u_a\}$ is a geodetic set of G, so that $g(G) \leq |S_1| = c$. Hence g(G) = c. Next we show that $f_q(G) = a$. By Theorem 1.1, every geodetic set of G contains $W_1 = Z \cup \{h_1, h_2, h_3, \dots, h_{c-b}\}$ and so it follows from Theorem 1.3(b) that $f_a(G) \leq g(G) - |W_1| = a$. Now, since g(G) = c and every g-set of G contains Z, it is easily seen that every g-set S is of the form $W_1 \cup \{c_1, c_2, c_3, \dots, c_a\}$, where $c_i \in F_i$ $(1 \le i \le a)$. Let T be any proper subset of S with |T| < a. Then it is clear that there exists some j such that $T \cap H_i = \Phi$, which shows that $f_q(G) = a$. This is true for all g-sets of G so that $f_q(G) = a$.

Theorem 4.5. For every integers *a,b,c* and *d* with $2 \le c < d$, $0 \le a \le b \le d$ and d > c - a + b, there exists a connected graph *G* such that $f_m(G) = a$, $f_q(G) = b$, m(G) = c and g(G) = d.

Proof. Case 1. a = b = 0. Then the graph G constructed in Theorem 4.1 satisfies the requirements of this theorem.

Case 2. a = 0, b > 1. Then the graph G constructed in Theorem 4.2 satisfies the requirements of this theorem.

Case 3. $1 \le a = b$. Then the graph G constructed in Theorem 4.4 satisfies the requirements of this theorem.

Case 4. $1 \le a < b$. Let G_1 be the graph obtained from G_a and Z_{b-a} by identifying the vertex t of G_a and the vertex l of Z_{b-a} . Now let G be the graph obtained from G_1 and $H_{d-(c-a+b)}$ by identifying the vertex q of G_1 and the vertex e of $H_{d-(c-a+b)}$ and adding new vertices $x, z_1, z_2, ..., z_{c-a-1}$ and joining the edges $xs, gz_1, gz_2, ..., gz_{c-a-1}$. Let $Z = \{x, z_1, z_2, ..., z_{c-a-1}\}$ be the set of end vertices of G. For $1 \le i \le a$ let $F_i = \{u_i, v_i\}$. It is clear that any m-set is of the form $S = Z \cup \{c_1, c_2, c_3, ..., c_a\}$ where $c_i \in F_i$ $(1 \le i \le a)$. Then as in earlier theorems it can be seen that $f_m(G) = a$ and m(G) = c. For $1 \le i \le a$ let $Q_i = \{n_i, p_i\}$. It is clear that any g-set is of the form $W = Z \cup \{h_1, h_2, h_3, ..., h_{d-(c-a+b)}\} \cup \{c_1, c_2, c_3, ..., c_a\} \cup \{d_1, d_2, d_3, ..., d_{b-a}\}$, where $c_i \in F_i$ $(1 \le i \le a)$ and $d_j \in Q_j$ $(1 \le j \le b-a)$. Then as in earlier theorems it can be seen that $f_g(G) = b$ and g(G) = d.

Theorem 4.6. For every integers a, b, c and d with $0 \le a \le b < c \le d$ and $c \ge b + 1$ and $c, d \ge 2$ there exists a connected graph G such that $f_g(G) = a$, $f_m(G) = b$, m(G) = c and g(G) = d.

Proof. Case 1. a = b = 0. Then the graph G constructed in Theorem 4.1 satisfies the requirements of this theorem.

Case 2. $a = 0, b \ge 1$. Then the graph *G* constructed in Theorem 4.2 satisfies the requirements of this theorem.

Case 3. $1 \le a = b$. Then the graph G constructed in Theorem 4.4 satisfies the requirements of this theorem.

Case 4. $1 \le a < b$.

Subcase 4a. c = d. Let G be the graph obtained from G_a and R_{b-a} by identifying the vertex t of G_a and the vertex q of R_{b-a} and then adding the new vertices $x, z_1, z_2, \ldots, z_{c-b-1}$ and joining the edges $xs, qz_1, qz_2, \ldots, qz_{c-b-1}$. First we show that m(G) = c. Let $Z = \{x, z_1, z_2, \ldots, z_{c-b-1}\}$ be the set of end vertices of G. Let $F_i = \{u_i, v_i\}$ $(1 \le i \le a)$ and $H_i = \{x_i, y_i, w_i\}$ $(1 \le i \le b - a)$. It is clear that any m-set of G is of the form $S = Z \cup \{c_1, c_2, c_3, \ldots, c_a\} \cup \{d_1, d_2, d_3, \ldots, d_{b-a}\}$ where $c_i \in F_i$ $(1 \le i \le a)$ and $d_j \in H_j$ $(1 \le j \le b - a)$. Then as in earlier theorems it can be seen that $f_m(G) = b$ and m(G) = c. It is clear that any g-set is of the form $W = Z \cup \{y_1, y_2, y_3, \ldots, y_{b-a}\} \cup \{c_1, c_2, c_3, \ldots, c_a\}$, where $c_i \in F_i$ $(1 \le i \le a)$. Then as in earlier theorems it can be seen that $f_g(G) = a$ and m(G) = c.

Subcase 4b. c < d. Let G_1 be the graph obtained from G_a and R_{b-a} by identifying the vertex t of G_a and the vertex v of R_{b-a} . Now let G be the graph obtained from G_1 and Z_{d-c} by identifying the vertex q of G_1 and the vertex l of Z_{d-c} and then adding new vertices $x, z_1, z_2, \ldots, z_{c-b-1}$ and joining the edges $xs, qz_1, qz_2, \ldots, qz_{c-b-1}$. Let $Z = \{x, z_1, z_2, \ldots, z_{c-b-1}\}$ be the set of end vertices of G. Let $F_i = \{u_i, v_i\}$ $(1 \le i \le a)$ and $H_i = \{x_i, y_i, w_i\}$ $(1 \le i \le b - a)$. It is clear that any m-set of G is of the form $S = Z \cup \{c_1, c_2, c_3, \ldots, c_a\} \cup \{d_1, d_2, d_3, \ldots, d_{b-a}\}$ where $c_i \in F_i$ $(1 \le i \le a)$ and $d_j \in H_j$ $(1 \le j \le b - a)$. Then as in earlier theorems it can be seen that $f_m(G) = b$ and m(G) = c. It is clear that any g-set is of the form $W = Z \cup \{y_1, y_2, y_3, \ldots, y_{b-a}\} \cup \{h_1, h_2, h_3, \ldots, h_{d-c}\} \cup \{c_1, c_2, c_3, \ldots, c_a\}$ where $c_i \in F_i$ $(1 \le i \le a)$. Then as in earlier theorems it can be seen that $f_q(G) = a$ and g(G) = d.

In the realization results we have given some restrictions on the parameters. So we leave the following as open question.

Problem 1. For any four positive integers a,b,c and d with $a \ge 0$, $b \ge 0$ and $2 \le c \le d$, does there exists a connected graph G with $f_m(G) = a$, $f_g(G) = b$, m(G) = c and g(G) = d.

5. The Upper Forcing Monophonic number of a graph

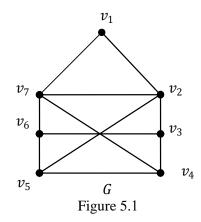
In [25], P. Zhang introduced the concept of the upper geodetic number of a graph. In the similar manner we define the upper forcing monophonic number of a graph as follows.

Definition 5.1. Let G be a connected graph and S a m-set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique m-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing monophonic number of S, denoted by $f_m(S)$, is

the cardinality of a minimum forcing subset of S. The *forcing monophonic number* of G, denoted by $f_m(G)$ is defined by $f_m(G) = \min \{f_m(S)\}$, where the minimum is taken over all m-set S in G and the upper forcing monophonic number of G, denoted by $f_m^+(G) = max\{f_m(S)\}$, where the maximum is taken over all m-sets S in G.

Theorem 5.2. For every connected graph $G, 0 \le f_m(G) \le f_m^+(G) \le m(G)$.

Example 5.3. The bounds in Theorem 5.2 is sharp. For $G = K_{1,p-1}$, $f_m(G) = 0$. For $G = C_5$, $f_m(G) = f_m^+(G) = 2$. Also the inequalities in Theorem 5.2 can be strict. For the graph G given in Figure 5.1, $M_1 = \{v_1, v_4, v_5\}$, $M_2 = \{v_1, v_4, v_6\}$ and $M_1 = \{v_1, v_3, v_5\}$ are only three m-sets of G so that $f_m(M_1) = 2$, $f_m(M_2) = 1$ and $f_m(M_3) = 2$ so that $f_m(G) = 2$, $f_m^+(G) = 2$ and m(G) = 3. Thus $0 < f_m(G) < f_m^+(G) < m(G)$.



So we leave the following as a open question.

Problem 2. For any three positive integers a, b and c with $0 \le a \le b \le c$, does there exists a connected graph G with $f_m(G) = a$, $f_m^+(G) = b$ and m(G) = c.

References

- [1] H.A. Ahangara, S. Kosarib, S.M. Sheikholeslamib, and L. Volkmannc, Graphs with large geodetic number, *Filomat.* 29:6 (2015), 1361 1368.
- [2] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
- [3] J. Caceres, O. Oellermann, and M. Puertasa, Minimal trees and monophonic convexity, *Discuss. Math. Graph Theory*, 32, (2012), 685 704.
- [4] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, *Discuss. Math. Graph Theory*, 19, (1999), 45 58.

- [5] G. Chartrand, F. Harary, and P. Zhang, On the geodetic number of a graph, *Networks*, (2002), 1-6.
- [6] M.C. Dourado, F. Protti, D. Rautenbach, and J.L. Szwarcfiter, Some remarks on the geodetic number of a graph, *Discrete Math.* 310, (2010), 832 837.
- [7] M.C. Dourado, F. Protti, and J.L. Szwarcfiter, Algorithmic aspects of monophonic convexity, *Electron. Notes Discrete Math.* 30, (2008), 177 182.
- [8] F. Harary, E. Loukakis, and C. Tsouros, The geodetic number of a graph, *Math. Comput. Modeling*, 17(11), (1993), 89 – 95.
- [9] C. Hernando, T. Jiang, M. Mora, I.M. Pelayo, and C. Seara, On the Steiner, geodetic and hull number of graphs, *Discrete Math.* 293, (2005), 139 154.
- [10] J. John and P.A.P. Sudhahar, The forcing edge monophonic number of a graph, SCIENTIA Series A: Mathematical Sciences, 23, (2012), 87-98
- [11] J. John and S. Panchali, The forcing monophonic number of a graph, *IJMA*-3 (3), (2012), 935 938.
- [12] J. John and S. Panchali, The upper monophonic number of a graph, Int. J. Math. Combin. 4, (2010), 46 – 52
- [13] J. John and K.U. Samundeswari, The forcing edge fixing edge-to-vertex monophonic number of a graph, *Discrete Math. Algorithms Appl.* 5(4), (2013), 1 – 10.
- [14] J. John and K.U. Samundeswari, The edge fixing edge-to-vertex monophonic number of a graph, *Appl. Math. E-Notes*, 15, (2015), 261 275.
- [15] J. John and K.U. Samundeswari, Total and forcing total edge-to-vertex monophonic numbers of graph, *J. Comb. Optim.* 34, (2017), 1 14.
- [16] J. John and D. Stalin, Edge geodetic self decomposition in graphs, *Discrete Math. Algorithms Appl.* 12(5), (2020), 2050064, 7 pages.
- [17] J. John and D. Stalin, The edge geodetic self decomposition number of a graph, *RAIRO Oper. Res.*, DOI:10.1051/ro/2020073.
- [18] J. John and D. Stalin, Distinct edge geodetic decomposition in graphs, Commun. Comb. Optim., DOI: 10.22049/CCO.2020.26638.1126
- [19] E.M. Paluga and S.R. Canoy, Jr, Monophonic numbers of the join and composition of connected graphs, *Discrete Math.* 307, (2007), 1146 – 1154.
- [20] I.M. Pelayo, Geodesic Convexity in Graphs, Springer Briefs in Mathematics, 2013.

- [21] A.P. Santhakumaran and J. John, On the forcing geodetic and forcing Steiner numbers of a graph, *Discuss. Math. Graph Theory*, 31, (2011), 611 624.
- [22] Li-Da Tong, Geodetic sets and Steiner sets in graphs, *Discrete Math.* 309(12), (2009), 3733 4214.
- [23] Li-Da Tong, The forcing hull and forcing geodetic numbers of graphs, *Discrete Appl. Math.* 157(5), (2009), 875 1164.
- [24] Li-Da Tong, The (*a*, *b*)-forcing geodetic graphs, *Discrete Math.* 309(6), (2009), 1199 1792.
- [25] P. Zhang, The upper forcing geodetic number of a graph, Ars Combin., DOI: 10.7151/dmgt.1084.