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Abstract

The investigation on the locating-chromatic number for graphs was initially studied by Chartrand
et al. on 2002. This concept is in fact a special case of the partition dimension for graphs. Even
though this topic has received much attention, the current progress is still far from satisfaction. We
can define the locating-chromatic number of a graph G as the smallest integer k such that there
exists a proper k-coloring on the vertex-set of G such that all vertices have distinct coordinates
(color codes) with respect to this coloring. Not like the metric dimension of any tree which is com-
pletely solved, the locating-chromatic number for most types of trees are still open. In this paper,
we study the locating-chromatic number of trees. In particular, we give lower and upper bounds
of the locating-chromatic number of trees formed by an edge-amalgamation of the collection of
smaller trees. We also show that the bounds are tight.
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1. Introduction

The topic of locating-chromatic number of graphs was introduced by Chartrand et al. [5] on
2002. They determined the locating-chromatic numbers of some well-known classes of graphs,
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i.e., paths, cycles, and double stars. They also characterized all graphs of order n with locating-
chromatic number n, i.e. multipartite complete graphs. This topic has received much attention.
Inspired by Chartrand et al., other authors have determined the locating-chromatic numbers of
some well-known classes of graphs. But the results are still limited. In particular for trees, the
locating-chromatic number for most types of trees are still open. Some classes of trees with their
locating-chromatic numbers known are amalgamations of stars and firecrackers by Asmiati et al.
[1, 2], homogeneous lobsters and binary trees by Syofyan et al. [6, 7], and complete n-arry trees
by Welyyanti et al. [9]. Furthermore, all trees on n vertices with locating-chromatic number 3 or
n − t where 2 ≤ t < n

2
have been successfully characterized, see [4] and [8], respectively. In

this paper, our aim is to determine the locating-chromatic number of the edge-amalgamation of
trees. We then estimate the locating-chromatic numbers for some structures of trees obtained by
the edge-amalgamation of trees.

Throughout this paper, we only deal with connected graphs. Let G = (V,E) be a connected
graph. For u, v ∈ V (G), let d(u, v) denote the distance between u and v. A k-coloring of G is a
function c : V (G)→ {1, 2, . . . , k} such that c(u) 6= c(v) for any two adjacent vertices u and v. In
other words, c is a partition Π of V (G) into color classes C1, C2, . . . , Ck, where the vertices of Ci

are colored by i for 1 ≤ i ≤ k. The color code of vertex u in G, denoted by cΠ(u), is defined to be
the ordered k-tuple (d(u,C1), d(u,C2), . . . , d(u,Ck)), where d(u,Ci) = min{d(u, x)|x ∈ Ci} for
1 ≤ i ≤ k. If any two distinct vertices of G have distinct color codes, then c is called a locating
k-coloring of G. Moreover, the least integer k such that there is a locating-coloring in G is called
the locating-chromatic number of G, denoted by χL(G).

The following two results are natural consequences and showed in [5].

Lemma 1.1. Let G be a connected non-trivial graph. Let c be a locating coloring of G and
u, v ∈ V (G). If d(u,w) = d(v, w) for every w ∈ V (G) \ {u, v}, then c(u) 6= c(v).

Corollary 1.1. If G is a connected graph containing a vertex adjacent to k leaves of G, then
χL(G) ≥ k + 1.

2. Main Results

For i = 1, 2, . . . , t, let Ti be a tree with a fixed edge eoi called the terminal edge. The edge-
amalgamation of all these trees Tis, denoted by Edge-Amal{Ti; eoi}, is a tree formed by taking all
these trees Tis and identifying their terminal edges. In this section, we will derive the (lower and
upper) bounds for the locating-chromatic number of the edge-amalgamation of trees.

Let T be a tree. A stem is a vertex in T that is adjacent to a leaf. A pendant edge is an edge
in T incident to a leaf in a tree. For any vertices u and v in T , we denote by uPv the unique
path connecting u and v. Let u ∈ V (T ) and define N(u) = {x ∈ V (T )|d(u, x) = 1}. For a
k-locating-coloring c of T, we denote c(N(u)) = {c(v)|v ∈ N(u)}.

For i = 1, 2, . . . , t, let Ti be a tree with a chosen terminal edge eoi = sili, where si is
a stem and li is a leaf. For any stem z of a tree Ti we denote Np(z) is the set of pendant
vertices adjacent to stem z. Let mi be the number of pendant edges adjacent to stem si and
ri = max{|Np(z)|z is a stem of Ti}. Next, in Edge-Amal{Ti; eoi}, we denote s = si and l = li.
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Theorem 2.1. Let Edge-Amal{Ti; eoi} be an edge-amalgamation of t disjoint trees Ti. Then,
max{ri + 1, 2 +

∑t
i=1(mi − 1)} ≤ χL(Edge-Amal{Ti; eoi}) ≤ 2 +

∑t
i=1(χL(Ti)− 2).

Proof. For i = 1, 2, . . . , t, let χL(Ti) = ki. Let ci be a ki-locating coloring of Ti such that ci(si) =
1 and ci(li) = 2. Define A = {v ∈ V (Ti)|ci(v) = 1,∀i ∈ [1, t]} and B = {v ∈ V (Ti)|ci(v) =
2,∀i ∈ [1, t]}. Now, define c : V (Edge-Amal{Ti; eoi})→ {1, 2, . . . , 2 + Σt

i=1(ki − 2)} as follows

c(x) =


1, if x ∈ A
2, if x ∈ B
c1(x), if x ∈ V (T1)
ci(x) + Σi

j=2(kj−1 − 2), if x ∈ V (Ti) \ (A ∪B), for all i > 1.

Since the coloring c preserves the locating coloring in every tree T1, T2, . . . , Tt, two vertices u and
v where c(u) = c(v) and c(N(u)) = c(N(v)) only occur for two cases below.

1. u, v ∈ V (Ti) for some i.
Then, their color codes are distinguished by the ki-locating coloring ci of Ti. Therefore,
these vertices are also distinguished by c.

2. u ∈ V (Ti) and v ∈ V (Tj) for some i 6= j.
Let c(u) = c(v) = 1. Since ci is a ki-locating coloring and by the definition of the coloring
c, there exists integer p 6= 1, 2 such that c(x) = p for some x ∈ N2(s) and x ∈ Ti. Thus, we
have:

dT (u,Cp) ≤ dT (u, s), (1)

and
dT (v, s) + 1 ≤ dT (v, Cp) ≤ dT (v, s) + 2. (2)

Similarly, consider the subtree Tj . Since cj is a kj-locating coloring and by the definition of
the coloring c, there exists integer q 6= 1, 2 and q 6= p such that c(y) = q for some y ∈ N2(s)
and y ∈ Tj . Thus, we have:

dT (v, Cq) ≤ dT (v, s), (3)

and
dT (u, s) + 1 ≤ dT (u,Cq) ≤ dT (u, s) + 2. (4)

Now, if dT (u,Cp) = dT (v, Cp) then from Eqs (1), (2), (3) and (4), we have that:

dT (v, Cq) < dT (v, s) + 1 ≤ dT (v, Cp) = dT (u,Cp) ≤ dT (u, s) < dT (u,Cq). (5)

Thus, we have that dT (u,Cq) 6= dT (v, Cq). Therefore, the color codes of u and v are differ-
ent. A similar argument holds for the case c(u) = c(v) = 2.

Thus, all vertices of the Edge-Amal{Ti; eoi} have distinct color codes. We conclude that

χL(Edge-Amal{Ti; eoi}) ≤ 2 +
t∑

i=1

(ki − 2).
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Next, since there is a stem adjacent to max{ri, 1 +
∑t

i=1(mi − 1)} leaves, by Corollary 1.1

χL(Edge-Amal{Ti; eoi}) ≥ max{ri + 1, 2 +
t∑

i=1

(mi − 1)}.

The following two theorems show the existence of trees formed by an edge-amalgamation
operation with the locating-chromatic number equals to the lower or upper bounds of Theorem
2.1. Furthermore, in Theorem 2.4, we give the example of trees formed by an edge-amalgation
operation with the locating-chromatic number lies in between upper and lower bounds of Theorem
2.1.

Theorem 2.2. If χL(Ti) = ki and mi = ki − 1 for any i, then χL(Edge − Amal(Ti; eoi)) =
2 +

∑t
i=1(χL(Ti)− 2).

Proof. By using the locating-coloring c in proof Theorem 2.1, we have χL(Edge-Amal(Ti; eoi)) ≤
2 +

∑t
i=1(ki − 2).

Next, since there are 1 +
∑t

i=1(ki − 2) leaves adjacent to a stem in Edge-Amal(Ti; eoi), by
Lemma 1.1 χL(Edge-Amal(Ti; eoi)) ≥ 2 +

∑t
i=1(ki − 2). So, we conclude that

χL(Edge-Amal(Ti; eoi)) = 2 +
t∑

i=1

(ki − 2).

Let Gwi
be a tree having a pendant eoi as depicted in Figure 1, where wi ≥ 2.

Figure 1. A tree Gwi
where wi ≥ 2.

Theorem 2.3. For i = 1, 2, . . . , t, let Ti = Gwi
. If t ≤ max{wi | i ∈ [1, t]}, then

χL(Edge-Amal(Ti; eoi)) = max{wi + 1 | i ∈ [1, t]}.
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Proof. Let r = max{wi | i ∈ [1, t]}. Since there are r leaves adjacent to a stem in Edge-Amal(Ti; eoi),
by Lemma 1.1 χL(Edge-Amal(Ti; eoi)) ≥ r + 1.

Now, let Ti = Gwi
such that w1 ≤ w2 ≤ . . . ≤ wt. We denote xi, yi, zij the non stem vertex,

the stem adjacent to wi leaves, and all leaves adjacent to yi, respectively.
Define a coloring c : V (Edge-Amal{Ti; eoi})→ {1, 2, . . . , r + 1} as follows

c(u) =



1, if u = s
2, if u = l or u = xi for 1 ≤ i ≤ t− 1 and i 6= 2
3, if u = x2

i, if u = yi
j, if u = zij and i 6= j
r + 1, if u = zij and i = j.

By this coloring, any two vertices u and v satisfying c(u) = c(v) and c(N(u)) = c(N(v)) only
occur for the pair of vertices s and yi for w1 = 2, and the pair of vertices l and x1. Their color
codes are distinguished by the last ordinate (their distances to a vertex in the color class r + 1).
Hence, all vertices have distinct color codes. So, χL(Edge-Amal(Ti; eoi)) ≤ max{ri + 1}.

Let Hm be a tree having a pendant eoi as depicted in Figure 2, where m ≥ 3.

Figure 2. A tree Hm where m ≥ 3.

Theorem 2.4. For i = 1, 2, . . . , t, let Ti = Hm. We have that χL(Edge-Amal(Ti; eoi)) = m+ 2, if
2 ≤ t ≤ m.

Proof. Let t ∈ [2,m]. Then, there are tm stems and each is adjacent to m leaves in graph
Edge-Amal(Ti; eoi). We suppose that χL(Edge-Amal(Ti; eoi)) = m + 1. Then, there are m + 1
possibilities to coloring all stems and their neighbors in Edge-Amal(Ti; eoi). Since t ≥ 2, there are
at least two stems having the same color. Therefore, the color codes of these stems are the same, a
contradiction to χL(Edge-Amal(Ti; eoi)) = m+ 1. So,

χL(Edge-Amal(Ti; eoi)) ≥ m+ 2.

Next, we define a coloring c : V (Edge-Amal{Ti; eoi})→ {1, 2, . . . ,m+ 2} as follows:
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c(u) =



1, if u = s
2, if u = l

i+ k, if u = x
[k]
i for 1 ≤ i ≤ m− 1, and 1 ≤ k ≤ t

k, if u = x
[k]
m for 1 ≤ k ≤ t

j + k − 1, if u = y
[k]
i,j and j 6= (i+ k) mod m, for 1 ≤ i ≤ m− 1,

1 ≤ j ≤ m− 1, and 1 ≤ k ≤ t

m+ k − 1, if u = y
[k]
i,j and j = (i+ k) mod m, for 1 ≤ i ≤ m− 1,

1 ≤ j ≤ m− 1, and 1 ≤ k ≤ t

j + k, if u = y
[k]
m,j for 1 ≤ k ≤ t.

Note that all the colors above in modulo m + 2. We will show that χL(Edge-Amal(Ti; eoi)) ≤
m + 2. Let u and v be any two vertices with c(u) = c(v). Then, by the coloring c, c(N(u)) 6=
c(N(v)) because the m − 1 neighbors colors of u are permutation of m − 1 neighbors colors
of v in modulo m + 2. Hence, all vertices in Edge-Amal(Ti; eoi) have distinct color codes. So,
χL(Edge-Amal(Ti; eoi)) ≤ m+ 2.

From Theorem 2.3, we shows the exact value of locating-chromatic number for some classes
of trees. First, we give definition of some classes of trees and their locating-chromatic number,
i.e. double stars, homogeneous caterpillars, and homogeneous lobsters. A double star, denoted
by Sm,n where n ≥ m ≥ 1, is the graph consisting of two stars K1,n and K1,m together with an
edge joining their centers. Chartrand et al. [5] have proved χL(Sm,n) = n+ 1. The homogeneous
caterpillar C(m,n) is the graph consisting of m stars K1,n by linking the centers from each stars.
Asmiati et al. [3] showed that the locating-chromatic number of homogeneous caterpillar is n+ 1
for 1 ≤ m ≤ n + 1, and n + 2 for m > n + 1. The homogeneous lobster Lb(m,n) is the graph
obtained by attaching the centers of stars K1,n to each leaf of C(m,n). Syofyan et al. [6] showed
that the locating-chromatic number of the homogeneous lobster is n + 1 if m = 1, n + 2 for
2 ≤ m ≤ 3(n = 2) + 1, or n+ 3 for m > 3(n+ 2) + 1.

Based on Theorem 2.3 and the locating-chromatic numbers of double stars, homogeneous
caterpillars, and homogeneous lobsters, we have the locating-chromatic number of edge-amalgama-
tion of these trees as follows. The terminal edge in each tree is chosen from the edges incident to
a stem having maximum leaves.

Corollary 2.1. For i = 1, 2, . . . , t, let Ti = Sm,n. Then, χL(Edge-Amal(Ti; eoi)) = t(n − 1) + 1,
if n ≥ m ≥ 1.

Corollary 2.2. For i = 1, 2, . . . , t, let Ti = C(m,n). If 1 ≤ m ≤ n+ 1, then
χL(Edge-Amal(Ti; eoi)) = t(n− 1) + 1.

Corollary 2.3. For i = 1, 2, . . . , t, let Ti = Lb(m,n). If m = 1, then χL(Edge-Amal(Ti; eoi)) =
t(n− 1) + 1.
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