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Abstract

Under a totally irregular total k-labeling of a graph G = (V,E), we found that for some certain
graphs, the edge-weight set W (E) and the vertex-weight set W (V ) of G which are induced by
k = ts(G), W (E) ∩W (V ) is a nonempty set. For which k, a graph G has a totally irregular total
labeling if W (E) ∩W (V ) = ∅? We introduce the total disjoint irregularity strength, denoted by
ds(G), as the minimum value k where this condition satisfied. We provide the lower bound of
ds(G) and determine the total disjoint irregularity strength of cycles, paths, stars, and complete
graphs.
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1. Introduction

Let G be a finite, simple, and undirected graph with the vertex set V and the edge set E. Let
f : V ∪ E → {1, 2, · · · , k} be a total k-labeling. Under f , the weight of a vertex v ∈ V is
w(v) = f(v) +

∑
uv∈E f(uv) and the weight of an edge uv ∈ E is w(uv) = f(u) + f(uv) + f(v).

If all the vertex (or edge)-weights are distinct then f is called a vertex (or edge) irregular total
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Figure 1. Totally disjoint irregular total labeling of (a) P3, (b) C3, (c) K4, and (d) K5

k-labeling and the minimum value k such that G has a vertex (or edge) irregular total k-labeling is
called the total vertex (or edge) irregularity strength, denoted by tvs(G) (or tes(G)), respectively.
This parameters were introduced by Baca et al. [2]. They gave the boundary of tes(G) and
tvs(G) and determined that for n vertices, tvs(Cn) = tes(Cn) =

⌈
n+2

3

⌉
, tes(Pn) =

⌈
n+1

3

⌉
,

tvs(Sn) = tes(Sn) =
⌈
n+1

2

⌉
, and tvs(Kn) = 2.

Later, Jendrol et al. [7] provided a better lower bound of tes(G) and determined that tes(K5) =

5 and tes(Kn) =
⌈
n2−n+4

6

⌉
, for n 6= 5. For any tree T , Ivanco and Jendrol [6] proved that tes(T )

is equal to the lower bound. Nurdin et al. [9] gave the lower bound for tvs for any graph G.
Recently, Marzuki et al. [8] combined the properties of tes(G) and tvs(G) and gave new

parameter called the total irregularity strength, denoted by ts(G). It is the minimum value k
for which G has a totally irregular total k-labeling. They proved that the lower bound ts(G) ≥
max{tes(G), tvs(G)} is sharp for Cn and Pn except for P2 or P5. In [14], we proved that for
n 6= 2, ts(Kn) = tes(Kn). In [5], Indriati et al. proved that for n ≥ 3, ts(Sn) = tvs(Sn). For
further reading, one can see [1], [3], [4], [5], and [10] - [13]. All these results showed that the
lower bound is sharp.

Observing ts(G), for the vertex weight-setW (V ) and the edge weight-setW (E) under a totally
irregular total labeling on G, W (V ) ∩W (E) 6= ∅. Considering this condition, we define a new
parameter called the total disjoint irregularity strength. A totally disjoint irregular total k-labeling
of a graph G as a total labeling f : V ∪E → {1, 2, · · · , k} which satisfies: (i) for any two vertices
x 6= y ∈ V , w(x) 6= w(y); (ii) for any two edges x1y1 6= x2y2 ∈ E, w(x1y1) 6= w(x2y2); (iii)
W (V ) ∩W (E) = ∅; where W (V ) (and W (E)) is the vertex (and edge) weight- set, respectively.
The minimum value k such that a graph G has a totally disjoint irregular total labeling is called the
total disjoint irregularity strength of a graph G, denoted by ds(G). Thus, for any graph G,

ds(G) ≥ ts(G). (1)

For instance, Fig. 1 shows a totally disjoint irregular total labeling of P3, C3, K4, and K5.
In this paper, we determine ds of cycles, paths, stars, and complete graphs.

2. Main Results

LetG = (V,E) be a connected graph. ForG has a totally irregular total k-labeling f : V ∪E →
{1, 2, · · · , k}, we need |V |+ |E| distinct weights. Let δ = δ(G) (or ∆ = ∆(G)) be the minimum
(or maximum) degree of vertex in G, respectively. Let ni be the number of vertices of degree i,
where i = δ, δ + 1, · · · ,∆. Then |V | =

∑∆
i=δ ni. Now, assume that δ = 1. Let f be a optimal
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labeling with respect to ds(G). Then the maximum weight has to be at least |E| + |V | + 1. The
maximum vertex weight is the sum of ∆+1 labels and every edge weight is the sum of three labels
imply that k ≥

⌈
|E|+|V |+1

∆+1

⌉
. Moreover, when n1 ≤ ∆, |V | + |E| distinct weights are only exist

if
⌈
|E|+|V |+1

∆+1

⌉
≥
⌈
|E|+n1+n2+1

3

⌉
. In the other hand, when n1 ≥ ∆, we have 2n1 distinct weights

depend on 2 labels, such that |V |+ |E| distinct weights are only exist if
⌈
|E|+|V |+1

∆+1

⌉
≥ n1. Hence,

the minimum value k ≥ max
{
n1,
⌈
|E|+n1+n2+1

3

⌉}
. Next, assume that δ 6= 1. For f is optimal

then the minimum weight is at least 3. Then, k ≥
⌈
|E|+n1+n2+2

3

⌉
. Thus we have the lower bound

of ds(G).

Theorem 2.1. Let G = (V,E) be a connected graph. Let v be a pendant vertex and ni(i = 1, 2)
be the number of vertices of degree i. Then

ds(G) ≥

 max
{
n1,
⌈
|E|+n1+n2+1

3

⌉}
, if v ∈ V ;⌈

|E|+n1+n2+2
3

⌉
, if v /∈ V.

Our next results show that this lower bound is sharp.

Theorem 2.2. Let m1 ≥ 3 and m2 ∈ N. Let Cm1 be a cycle with m1 vertices and Pm2 be a path
with m2 vertices. Then

ds(Cm1) =

⌈
2m1 + 2

3

⌉
;

ds(Pm2) =

{
3, for m2 = 3;⌈

2m2

3

⌉
, otherwise.

To prove Theorem 2.2, we need this lemma.

Lemma 2.1. For any integers y and xi, 1 ≤ i ≤ 2n, let {xi} be a sequence. If the sum of 3
consecutive integers in {xi} is

xi + xi+1 + xi+2 =

{
y + 2i− 2, for 1 ≤ i ≤ n− 1;
y + 4n− 2i− 3, for n ≤ i ≤ 2n− 2;

then

xi =

{
x2n−1, for i = n− 3j and 1 ≤ j ≤

⌈
2n
3

⌉
;

x2n−i+2, for i = n− 3j + 1 and 1 ≤ j ≤
⌈

2n
3

⌉
.

Proof. Set all equations above as a linear system leads to the solution which is required.

Now, we are able to prove Theorem 2.2.
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Proof. Let Cm1 = {v1, e1, v2, e2, · · · , vm1 , em1} and Pm2 = {v1, e1, v2, e2, · · · , vm2}. Let t(m1) =⌈
2m1+2

3

⌉
and t(m2) =

⌈
2m2

3

⌉
. We divide the proof into two cases as follows:

Case 1. m2 = 3
Suppose that ds(P3) = 2. Since we need 5 distinct weight from 2 to 6, one endpoint (and its
incidence edge) can be labeled by 1 to have smallest weight. In the other hand, maximum weight
6 only can occur when the rest vertices and edge are labeled by 2. Hence, there are one vertex and
one edge of the same weight. Contrary to hypothesis. Thus, ds(P3) ≥ 3. By label P3 as in Fig.1,
we have ds(P3) = 3.
Case 2. m1 ≥ 3 and m2 6= 3
It is trivial for n2 = 1. For n1 ≥ 3 and n2 ≥ 2, by Theorem 2.1, ds(Cm1) ≥ t(m1) and ds(Pm2) ≥
t(m2). For the reverse inequality, we construct fi : V ∪E → {1, 2, · · · , t(mi)}, for i = 1, 2, as fol-
lows: Let fm1

1 = {vm1
1 , em1

1 , vm1
2 , em1

2 · · · vm1
m1
, em1
m1
} and fm2

2 = {vm2
1 , em2

1 , vm2
2 , em2

2 · · · vm2
m2
} be the

alternating vertex (and edge) label-sets, where f1(vi) = vm1
i , f2(vi) = vm2

i , f1(ei) = em1
i , f2(ei) =

em2
i , andW (Cm1) = {w(vi), w(ei) |1 ≤ i ≤ m1} andW (Pm2) = {w(v1), w(e1), w(v2), w(e2), · · · ,
w(vm2)} be the alternating vertex (and edge) weight-sets of Cm1 and Pm2 , respectively. Let

d(mi) =

{
t(mi)− 1, for m1 ≡ j mod 3, j = 0, 1,m2 ≡ j mod 3, j = 0, 2;
t(mi), for m1 ≡ 2 mod 3,m2 ≡ 1 mod 3.

We prove by induction on mi. For the base step, it is true that for f 3
1 = {1, 1, 2, 3, 3, 1}, f 4

1 =
{1, 2, 2, 3, 3, 4, 4, 1}, and f 5

1 = {1, 1, 2, 2, 3, 3, 4, 4, 4, 1}, we have W (C3) = {3, 4, 6, 8, 7, 5},
W (C4) = {4, 5, 7, 8, 10, 11, 9, 6}, andW (C5) = {3, 4, 5, 7, 8, 10, 11, 12, 9, 6} and for f 2

2 = {1, 1, 2},
f 4

2 = {1, 1, 1, 2, 2, 3, 3}, and f 6
2 = {1, 1, 1, 3, 4, 4, 4, 2, 3, 1, 3}, we have W (P2) = {2, 4, 3},

W (P4) = {2, 3, 4, 5, 7, 8, 6}, and W (P6) = {2, 3, 5, 8, 11, 12, 10, 9, 6, 7, 4} such that for i = 1, 2,
fi is a totally disjoint irregular total t(mi)- labeling, ds(Cm1) = t(m1) for m1 ∈ {3, 4, 5} and
ds(Pm2) = t(m2) for m2 ∈ {2, 4, 6}, where the maximum weight is w(ed(mi)).
For the inductive step, we assume that for all k1 and k2, f1 is a totally disjoint irregular total
t1-labeling of Ck1 and f2 is a totally disjoint irregular total t2-labeling of Pk2 , where

ekid(ki)
=

{
ti − 1, for i = 2, k2 ≡ j mod 9, j ∈ {1, 2, 8};
ti, for i ∈ {1, 2}, k2 ≡ j mod 9, j ∈ {0, 3, 4, 5, 6, 7};

vkid(ki)+1 =

{
ti − 1, for i ∈ {1, 2}, k1 = 6, k2 ≡ j mod 9, j ∈ {5, 7, 8};
ti, for i ∈ {1, 2}, k1 6= 6, k2 ≡ j mod 9, j ∈ {0, 1, 2, 3, 4, 6};

and the maximum weight is w(ed(ki)).
Let Gk1

∼= Ck1 and Gk2
∼= Pk2 . To prove that ds(G(ki)+3) = t(ki + 3) = ds(Gki) + 2, we construct

G(ki)+3 fromGki by subdividing ed(ki) as described in Fig.2. Define f (ki)+3
i \{v(ki)+3

(ki)+1, e
(ki)+3
(ki)+1, v

(ki)+3
(ki)+2,

e
(ki)+3
(ki)+2, v

(ki)+3
(ki)+3, e

(ki)+3
(ki)+1} = fkii . Setting w(ed(ki)) = w(ed(ki+3)−2) and w(vd(ki+3)+1) = w(vd(ki)+1),

we have a 6= b for a, b ∈ W (G(ki)+3) \ {v(ki)+1, e(ki)+1, v(ki)+2, e(ki)+2, v(ki)+3, e(ki)+1}. Moreover,
e

(ki)+3
d(ki)

= e
(ki)+3
(ki)+3 = e

(ki)
d(ki)

and v(ki)+3
d(ki)+1 = v

(ki)+3
(ki)+1 = v

(ki)
d(ki)+1. This is sufficient to apply Lemma 2.1.

Let {xi |1 ≤ i ≤ 8} = {e(ki)+3
d(ki)

, v
(ki)+3
(ki)+1, e

(ki)+3
(ki)+1, v

(ki)+3
(ki)+2, e

(ki)+3
(ki)+2, v

(ki)+3
(ki)+3, e

(ki)+3
(ki)+3, v

(ki)+3
d(ki)+1} and y =

w(ed(ki)) + 1. Then, we have v(ki)+3
(ki)+2 = e

(ki)
d(ki)

+ 2, e(ki)+3
(ki)+2 = v

(ki)
d(ki)+1 + 2, and v(ki)+3

(ki)+3 − 1 = e
(ki)+3
(ki)+1,

94



www.ijc.or.id

The total disjoint irregularity strength of some certain graphs | M.I. Tilukay and A.N.M. Salman

Figure 2. The construction of Pk+3 from Pk

where

e
(ki)+3
(ki)+1 =


3, for i = 1, ki = 3;
t(k1) + 1, for i = 1, ki 6= 3;
2ki − 2t(ki) + 3, for i = 2, k2 ≡ 8 mod 9;
2ki − 2t(ki) + 2, for i = 2, k2 ≡ j mod 9, j ∈ {1, , 2, 5, 7};
2ki − 2t(ki) + 1, for i = 2, k2 ≡ j mod 9, j ∈ {0, 3, 4, 6}.

Then, it can be checked that the maximum label is ds(Gki) + 2 = ds(G(ki)+3). We have completed
the labeling fi on G(ki)+3 and have proved that fi is a totally disjoint irregular total t(ki)-labeling.
Thus, for any positive integer m1 ≥ 3 and m2 ∈ N, ds(Cm1) =

⌈
2m1+2

3

⌉
, ds(Pm2) =

⌈
2m2

3

⌉
, for

m2 6= 3 and ds(P3) = 3.

Theorem 2.3. Let n ∈ N, n ≥ 3 and Sn be a star with n+ 1 vertices, then ds(Sn) = n.

Proof. Let V (Sn) = {vi|1 ≤ i ≤ n + 1} where vn+1 is the vertex of degree n. By Theorem 2.1,
ds(Sn) ≥ n. To prove the reverse inequality, we construct an irregular total labeling f : V ∪ E →
{1, 2, · · · , t} by define f(vi) = i for 1 ≤ i ≤ n−1, f(vn) = n−2, f(vn+1) = n, f(vivn+1) = 1 for
1 ≤ i ≤ n−1, and f(vnvn+1) = 3. Hence, we havew(vi) = i+1 for 1 ≤ i ≤ n−1, w(vn) = n+1,
w(vn+1) = 2n + 2, w(vivn+1) = n + i + 1 for 1 ≤ i ≤ n − 1, and w(vnvn+1) = 2n + 1. See
that W (V ) ∩W (E) = ∅. Thus, f is a totally disjoint irregular total labeling and ds(Sn) = n for
n ≥ 3.

Next, by using our previous result in [14], we determine the exact value of ds(Kn). For the
convenient of reader, we provided the construction of totally irregular total labeling of Kn for
n 6= 5, 10, 12 given in [14]. Let

⌈
n2−n+4

6

⌉
= t and

⌊
n+1

3

⌋
= s. We divide the vertex-set into 3

mutually disjoint subsets, sayA,B, and C, whereA = {ai |1 ≤ i ≤ s},B = {bi |1 ≤ i ≤ n−2s},
and C = {ci |1 ≤ i ≤ s}. Let f : V ∪ E → {1, 2, · · · , t} defined by:

f(ai) = 1, for 1 ≤ i ≤ s;
f(bi) =

(
s
2

)
+ s(i− 1) + 1, for 1 ≤ i ≤ n− 2s;

f(ci) = t, for 1 ≤ i ≤ s;
f(aiaj) =

(
j−1

2

)
+ i, for 1 ≤ i < j ≤ s;

f(aibj) = i, for 1 ≤ i ≤ s, 1 ≤ j ≤ n− 2s;
f(aicj) = s(i− 1) + j, for 1 ≤ i, j ≤ s;
f(bibj) = s(n− s− i− j + 2)−

(
s
2

)
+
(
j−1

2

)
+ i, for 1 ≤ i < j ≤ n− 2s;

f(bicj) =
(
n−2s

2

)
+ s(n− s)− t+ j + 1, for 1 ≤ i ≤ n− 2s, 1 ≤ j ≤ s;

f(cicj) =
(
n
2

)
− 2(t− 1)−

(
s−i+1

2

)
+ j − i, for 1 ≤ i < j ≤ s.

(2)
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Theorem 2.4. Let n ∈ N, n /∈ {i |6 ≤ i ≤ 59} ∪ {61, 62, 65, 68, 71, 74} and Kn be a complete
graph with n vertices. Then

ds(Kn) =

{
n, for n ≤ 5;⌈
n2−n+4

6

⌉
, otherwise.

Proof. By 1 and Theorem 2.1, ds(Kn) ≥ ts(Kn). Let t =
⌈
n2−n+4

6

⌉
. For the reverse inequality,

we divide the proof into three cases as follows:
Case 1. n ≤ 5
It is obvious for n ≤ 3. Now, suppose that ds(K4) = 3. We need 10 distinct weight with minimum
weight 3. We can label 2 vertices and one edge by label 1. In the other hand, the maximum weight
should be 12. Labeling 3 edges and one vertex by label 3 implies that there are 2 edges with the
same weight 7. Contrary to hypothesis. Thus, ds(K4) ≥ 4. To prove the upper bound for n = 4 or
5, we define f as in Fig. 1. Therefore, we have the exact value of ds(Kn) for n ≤ 5.
Case 2. n = 77 or n ≥ 80
Consider that under the totally irregular total t- labeling of Kn in (2), the maximum edge weight is
w(cs−1cs) =

(
n
2

)
+ 2 and minimum vertex-weight is w(a1) = s(s2−1)

6
+ n. It follow w(cs−1cs) <

w(a1) implies vertex-weight set and edge weight set are disjoint. Thus, ds(Kn) = t for n = 77 or
n ≥ 80.
Case 3. n ∈ {60, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 78, 79}
Consider that under the totally irregular total t- labeling of Kn provided in (2), we met condition
where the minimum vertex-weight w(a1) is equal to the weight of an edge connecting vertices in
(B,C) or (C,C). Then, we modify f . Let E(Kn) = {ei |1 ≤ i ≤ n(n− 1)/2}. Let ep ∈ E(Kn)
be an edge where w(a1) = w(ep). Since t ≡ 2 mod 3, then f(en(n−1)/2) = f(cs−1cs) = t − 1.
It implies that we can change f(ei) by f(ei + 1), for p ≤ i ≤ n(n − 1)/2 without changing the
maximum label such that W (V (Kn)) ∩W (E(Kn)) = ∅. It complete the proof.

Open Problem

1. For n ∈ N, n ∈ {i |6 ≤ i ≤ 59} ∪ {61, 62, 65, 68, 71, 74}, find the exact value of ds(Kn).
2. For any graph G, find ds(G).
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