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Abstract

We say that a graph B is berge (see [1]) if every graph B′ ∈ {B, B̄} does not contain an induced
cycle of odd length≥ 5 [B̄ is the complementary graph ofB]. A graphG is perfect if every induced
subgraph G′ of G satisfies χ(G′) = ω(G′), where χ(G′) is the chromatic number of G′ and ω(G′)
is the clique number of G′. The Berge conjecture states that a graph H is perfect if and only if
H is berge. Indeed, the Berge problem ( or the difficult part of the Berge conjecture) consists to
show that χ(B) = ω(B) for every berge graph B. In this paper, we give the direct short proof of
the Berge conjecture by reducing the Berge problem into a simple equation of three unknowns and
by using trivial complex calculus coupled with elementary computation and a trivial reformulation
of that problem via the reasoning by reduction to absurd [we recall that the Berge conjecture was
first proved by Chudnovsky, Robertson, Seymour and Thomas in a paper of at least 143 pages long
(see [3]). That being said, the new proof given in this paper is far more easy and more short than
the first given in [3]]. Our work in this paper is original and is completely different from all strong
investigations made by Chudnovsky, Robertson, Seymour and Thomas in their manuscript of at
least 143 pages long.
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Preliminary and Definitions
Recall that in a graph G = [V (G), E(G), χ(G), ω(G), α(G), Ḡ], V (G) is the set of vertices, E(G)
is the set of edges, χ(G) is the chromatic number i.e. the smallest number of colors needed to
color all vertices of G such that two adjacent vertices do not receive the same color, ω(G) is the
clique number of G i.e. the size of a largest clique of G. Recall that a graph F is a subgraph
of G, if V (F ) ⊆ V (G) and E(F ) ⊆ E(G). We say that a graph F is an induced subgraph of G
by Z, if F is a subgraph of G such that V (F ) = Z, Z ⊆ V (G), and for any pair of vertices x
and y of F (note that x and y are in V (F ) = Z), xy is an edge of F if and only if xy is an edge
of G. For X ⊆ V (G), G \ X denotes the subgraph of G induced by V (G) \ X . A clique of G
is a subgraph of G that is complete; such a subgraph is necessarily an induced subgraph (recall
that a graph K is complete if every pair of vertices of K is an edge of K), α(G) is the stability
number of G i.e. the size of a largest stable set of G. Recall that a stable set of a graph G is a set
of vertices of G that induces a subgraph with no edges, and Ḡ is the complementary graph of G
recall Ḡ is the complementary graph of G, if V (G) = V (Ḡ) and two vertices are adjacent in G if
and only if they are not adjacent in Ḡ. We say that a graph B is berge, if every B′ ∈ {B, B̄} does
not contain an induced cycle of odd length ≥ 5. A graph G is perfect if every induced subgraph
G′ of G satisfies χ(G′) = ω(G′). The Berge conjecture states that a graph H is perfect if and only
if H is berge. Indeed the difficult part of the Berge conjecture consists to show that χ(B) = ω(B)
for every berge graph B. Briefly, the difficult part of the Berge conjecture will be called the Berge
problem. It is easy to see:

Assertion 0.0.Let G be a graph and F be a subgraph of G. Then

ω(G) ≤ χ(G) andχ(F ) ≤ χ(G).

It is known and it is not very difficult to prove that:
Assertion 0.1. The Berge conjecture is true for every graph G such that 0 ≤ χ(G) ≤ 2. 2
Assertion 0.2. The Berge problem is true for every graph G such that 0 ≤ χ(G) ≤ 2.
Proof. Immediate and is an obvious consequence of Assertion 0.1.2

Assertion 0.3. For every berge graph B such that 0 ≤ χ(B) ≤ 2, we have ω(B) = χ(B).
Proof. Immediate and is a trivial consequence of Assertion 0.2.2

That being so, this paper is divided into five simple sections. In Section 1 , we introduce a graph
parameter denoted by β [β is called the berge index], and, using this graph parameter, we give the
original reformulation of the Berge problem. In Section 2, we use the original reformulation of the
Berge problem to introduce uniform graphs and relative subgraphs [uniform graphs and relative
subgraphs are crucial for the proof of the result which implies the Berge conjecture], and we give
some elementary properties of these graphs; in Section 2, we also define another graph parameter
denoted by b [the graph parameter b is called the berge caliber, and is related to the berge index
defined in Section 1], and using the graph parameter b, we prove a trivial proposition which is
equivalent to the Berge problem. We will use this proposition in Section 4 for the proof of the
result which implies the Berge conjecture. In Section 3, we prove elementary properties linked to
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isomorphisms, trivial complex calculus, elementary computation, and we reduce the Berge prob-
lem into a simple equation of three unknowns; we will use them in Section 4 [In Section 3, we
will let one Proposition unproved and we will prove this Proposition in Section 3’ (Epilogue)]. In
Section 4, using elementary properties proved in Section 3 and a trivial proposition of Section 2,
we prove a Theorem which immediately implies the Berge problem, and, at the same time, we also
prove the Berge conjecture. In Section 3’ (Epilogue), we end this paper by proving the only Propo-
sition we let unproved in Section 3. In this paper, every graph is finite, is simple and undirected.

1. The Berge index of a graph and the original reformulation of the Berge problem

In this section, we introduce some important definitions that are not standard. In particular,
we define a graph parameter called the berge index [and denoted by β], and we use it to give the
original reformulation of the Berge problem.

Definition 1.0 (true pal). We say that a graph G is a true pal of a graph F , if F is a subgraph of
G and χ(F ) = χ(G). trpl(F) denotes the set of all true pals of F ; so G ∈ trpl(F ) means G is a
true pal of F .

Definition 1.1 (complete ω(Q)-partite graph and Ω). We recall that a graph Q is a complete
ω(Q)-partite graph, if there exists a partition Ξ(Q) = {Y1, ..., Yω(Q)} of V (Q) into ω(Q) stable
set(s), such that x ∈ Yj ∈ Ξ(Q), y ∈ Yk ∈ Ξ(Q) and j 6= k, ⇒ x and y are adjacent in Q. Ω
denotes the set of all complete ω(Q)-partite graphs; soQ ∈ Ω meansQ is a complete ω(Q)-partite
graph. For example, if G is a complete ω(G)-partite graph with ω(G) ∈ {0, 1, 2, 3, 4, ....., etc..},
then G ∈ Ω. More generally, G is a complete ω(G)-partite graph with ω(G) ≥ 0, if and only
if G ∈ Ω. It is immediate that χ(Q) = ω(Q) for all Q ∈ Ω (it is also immediate that for every
Q ∈ Ω, the partition Ξ(Q) = {Y1, ..., Yω(Q)} of V (Q) into ω(Q) stable set(s) is canonical).

Now, using the previous definitions, then the following Assertion becomes immediate.

Assertion 1.2 . Let G be a graph. Then, there exists a graph P ∈ Ω such that P is a true pal of G
[i.e. there exists P ∈ Ω such that P ∈ trpl(G)].

Proof. Indeed let G be a graph and let Ξ(G) = {Y1, ..., Yχ(G)} be a partition of V (G) into χ(G)
stable set(s) (it is immediate that such a partition Ξ(G) exists). Now let Q be a graph defined as
follows: (i) V (Q) = V (G), (ii) Ξ(Q) = {Y1, ..., Yχ(G)} = Ξ(G) is a partition of V (Q) into χ(G)
stable set(s) such that x ∈ Yj ∈ Ξ(Q), y ∈ Yk ∈ Ξ(Q) and j 6= k,⇒ x and y are adjacent in Q.
Clearly Q ∈ Ω, χ(Q) = ω(Q) = χ(G), and G is visibly a subgraph of Q; observe that Q is a true
pal of G such that Q ∈ Ω (because G is a subgraph of Q and χ(Q) = χ(G) and Q ∈ Ω). Now put
Q = P ; Assertion 1.2 follows.2

Using Assertion 1.2, let us define.

Definition 1.3 (parent). We say that a graph P is a parent of a graph F , if P ∈ Ω
⋂
trpl(F ).

In other words, a graph P is a parent of F , if P is a complete ω(P )-partite graph and P is also a
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true pal of F [note that such a P clearly exists, via Assertion 1.2]. parent(F) denotes the set of all
parents of F ; so P ∈ parent(F ) means P is a parent of F .

The following assertion is an immediate consequence of Definition 1.3 and Assertion 1.2.

Assertion 1.4 . Let G be a graph. Then, there exists a graph P which is a parent of G [i.e.
there exists a graph P such that P ∈ parent(G)].
Proof. Immediate [use Definition 1.3 and Assertion 1.2]. 2

Using the definition of a parent [use Definition 1.3], the definition of a true pal [use Definition
1.0], the definition of a berge graph [ use Preliminary and definitions] and the definition of Ω [use
Definition 1.1], then the following two Assertions are immediate.

Assertion 1.5. Let F be a graph and let P ∈ parent(F ); then χ(F ) = χ(P ) = ω(P ). 2

Assertion 1.6. Let G ∈ Ω. Then, ω(G) = χ(G) and G is berge. 2

Assertion 1.6 says that the set Ω is an obvious example of berge graphs. Curiously the set Ω will
be fundamental for the proof of the Berge conjecture.

Now, we define the berge index and a representative.

Definition 1.7 (The berge index and a representative). If G ∈ Ω, then the berge index of G is
denoted by β(G) where β(G) = min

F∈B(G)
ω(F ) and where B(G) = {F ;G ∈ parent(F ) and F is

berge} [B(G) is the set of graphs F such that G is a parent of F and F is berge]; and a represen-
tative of G is any graph S ∈ B(G) such that ω(S) = β(G).
IfG 6∈ Ω, then the berge index ofG is denoted by β(G) where β(G) = min

P∈parent(G)
β(P ) and where

parent(G) is the set of all parents of G [use Definition 1.3]; and a representative of G is any graph
S such that ω(S) = β(G) and S is an element of any set B(P ) such that P ∈ parent(G) and
β(P ) = β(G) [ notice that B(P ) = {F ;P ∈ parent(F ) and F is berge}] [we will prove that the
berge index β(G) exists and is well defined for every graph G and we will also prove that for every
graph G, there exists at least one representative of G].

Using Definitions 1.7, let us Remark.

Remark 1.7′. Let G be a graph. Then β(G) exists, is well defined and there exists S such that S is
a representative of G [such a S is berge and we have χ(S) = χ(G)].

Proof.

(i) If G ∈ Ω, then β(G) exists, is well defined and there exists a graph S such that S is a
representative of G [such a S is berge and we have χ(S) = χ(G) ]. (Indeed let B(G) [recall
that B(G) = {F ;G ∈ parent(F ) and F is berge}], since G ∈ Ω, then G is berge [use
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Assertion 1.6]; so G ∈ B(G) and clearly

min
F∈B(G)

ω(F ) exists and there exists S ∈ B(G) such that ω(S) = min
F∈B(G)

ω(F ). (1.1)

Using (1.1) and the meaning of ( β(G),B(G) ), then we immediately deduce that

β(G) exists, is well defined,S is a representative ofG andS is berge andχ(S) = χ(G).
(1.2)

(ii) If G 6∈ Ω, then β(G) exists, is well defined and there exists a graph S such that S is a
representative of G [such a S is berge and we have χ(S) = χ(G)]. (Indeed let P be a parent
of G [such a P exists by using Assertion 1.4]; since in particular P ∈ Ω [because P is a
parent of G] , then using (i), we immediately deduce that β(P ) exists and therefore

min
P∈parent(G)

β(P ) also exists. (1.3)

(1.3) clearly says that

β(G) = min
P∈parent(G)

β(P ) exists and is well defined. (1.4)

Now let Q′ ∈ parent(G) such that β(Q′) = β(G) [such a Q′ exists, via (1.4)] and let
S ∈ B(Q′) such that ω(S) = β(G) [we recall that B(Q′) = {F ;Q′ ∈ parent(F ) and F is
berge}]; then using the previous, it becomes immediate to deduce that ²

S is berge and is a representative ofG andχ(S) = χ(Q′) = χ(G). (1.5)

So

β(G) exists, is well defined andS is a representative ofG andS is berge and

χ(S) = χ(G) (1.6)

[use (1.4) and (1.5)]). Remark 1.7′ follows (use (i) and (ii)). 2

Remark 1.7′′. Let (K,G,B, P ), where K is a complete graph, G ∈ Ω, B is berge and P ∈
parent(B). We have the following elementary properties.
(1.7′′.1). If ω(G) ≤ 1, then ω(G) = χ(G) = β(G).
(1.7′′.2). ω(K) = χ(K) = β(K).
(1.7′′.3). ω(G) ≥ β(G).
(1.7′′.4). β(P ) ≤ ω(B). ( Proof. Property (1.7′′.1) is immediate.
(1.7′′.2). Indeed let B(K) = {F ;K ∈ parent(F ) and F is berge}, since K is a complete graph,
clearly K is berge and B(K) = {K}; observe that K ∈ Ω and so β(K) = min

F∈B(K)
ω(F ) [use the

definition of the parameter β and observe that K ∈ Ω], and using the preceding, we easily deduce
that β(K) = ω(K) = χ(K). Property (1.7′′.2) follows.
(1.7′′.3). Indeed let B(G) = {F ;G ∈ parent(F ) and F is berge}; since G is a complete graph,
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clearly β(G) = min
F∈B(G)

ω(F ) [use the definition of the parameter β and observe that G ∈ Ω]; ob-

serve that G is berge [use Assertion 1.6], so G ∈ B(G) and the previous equality implies that
ω(G) ≥ β(G).Property (1.7′′.3) follows.
(1.7′′.4).Indeed let B(P ) = {F ;P ∈ parent(F ) and F is berge}; clearly B ∈ B(P ); observe that
P ∈ Ω, so β(P ) = min

F∈B(P )
ω(F ) [use the definition of the parameter β and observe that P ∈ Ω], and

using the preceding, we easily deduce that β(P ) ≤ ω(B).Property (1.7′′.4) follows. and Remark
1.7′′ immediately follows.2 )

Now the following Theorem is the original reformulation of the Berge problem.

Theorem 1.8. (The original reformulation of the Berge problem). The following are equivalent.
(1) The Berge problem is true [i.e. For every berge graph B, we have χ(B) = ω(B)]
(2) For every graph F , we have χ(F ) = β(F ).
(3) For every G ∈ Ω, we have ω(G) = β(G).
Proof. (1) ⇒ (2). Indeed let F be graph and let S be a representative of F , in particular S is
berge [use Remark 1.7′] and clearly χ(S) = ω(S); now observing that ω(S) = β(F ) [since S is
a representative of F ], then the previous two equalities imply that χ(S) = β(F ). Observe that
χ(S) = χ(F ) [by observing that S is a representative of F and by using Remark 1.7′] and the last
two equalities immediately become χ(F ) = β(F ).
(2) ⇒ (3)]. Let G ∈ Ω; in particular G is a graph and so χ(G) = β(G). Note χ(G) = ω(G)
(since G ∈ Ω) and the previous two equalities imply that ω(G) = β(G).
(3) ⇒ (1)]. Let B be a berge and let P ∈ parent(B); property (1.7′′.4) of Remark 1.7′′ implies
that

β(P ) ≤ ω(B). (1.7)

Note
β(P ) = ω(P ) (1.8)

[since P ∈ Ω] and clearly
ω(P ) ≤ ω(B) (1.9)

[use (1.7) and (1.8)]. It is immediate that χ(B) = χ(P ) = ω(P ) [since P ∈ parent(B)] and
inequality (1.9) becomes χ(B) ≤ ω(B). Observe that χ(B) ≥ ω(B) and the previous two in-
equalities imply that χ(B) = ω(B). 2

We will use Theorem 1.8 in Section 2 to define uniform graphs which are crucial for the proof
of the Berge conjecture. Now using the definition of the Berge problem and the definition of the
berge index β and Assertion 0.2, then the following assertion becomes trivial and we leave it to the
reader.
Assertion 1.9. We have the following three properties.
(1). The Berge problem is true for every graph G′ such that 0 ≤ χ(G′) ≤ 2 [i.e. For every berge
graph B such that 0 ≤ χ(B) ≤ 2, we have χ(B) = ω(B)].
(2) For every graph F such that 0 ≤ χ(F ) ≤ 2, we have χ(F ) = β(F ).
(3) For every G ∈ Ω such that 0 ≤ χ(G) ≤ 2, we have ω(G) = β(G). 2
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2. Uniform graphs, relative subgraphs, the berge caliber and some consequences

In this section, we use the original reformulation of the Berge problem given by Theorem 1.8
to introduce uniform graphs and relative subgraphs [uniform graphs and relative subgraphs are
crucial for the proof of the result which implies the Berge conjecture], and we give some elemen-
tary properties of these graphs. In this section, we also define another graph parameter denoted
by b [the graph parameter b is called the berge caliber, and is related to the berge index defined
in Section 1], and using the graph parameter b, we prove simple propositions that we will use in
Section 4 to give the short proof of the Berge problem [in particular, we prove a trivial proposition
which is equivalent to the Berge problem]. In this section, the definition of a berge graph [use
Preliminary and definitions], the definition of a true pal [use Definition 1.0], the denotation of Ω
[use Definition 1.1], the definition of a parent [use Definition 1.3], and the definition of the berge
index β [use Definitions 1.7], are fundamental and crucial. Now let us remark.

Remark 2.0. Let B be berge and let P be a parent of B; then β(P ) ≤ ω(B).
Proof. Immediate and is an obvious consequence of property (1.7′′.4) of Remark 1.7′′.2

Remark 2.1. Let K be a complete graph; then β(K) = ω(K) = χ(K).
Proof. Immediate and is an obvious consequence of property (1.7′′.2) of Remark 1.7′′. 2

From Theorem 1.8, we are going to define a new class of graphs in Ω [called uniform graphs];
we will also define relative subgraphs, and we will present some properties related to these graphs.
These properties are elementary and curiously, are crucial for the result which immediately implies
the Berge problem and the Berge conjecture. Before, let us define.

Definition 2.2 [optimal coloration and 	(G)]. An optimal coloration of a graph G is a partition
Ξ(G) = {Y1, ..., Yχ(G)} of V (G) into χ(G) stable set(s) [where χ(G) is the chromatic number of
G]; 	(G) denotes the set of all optimal colorations of G; so, Ξ(G) ∈ 	(G) means Ξ(G) is an
optimal coloration of G.

Definition 2.3 (the canonical coloration). Let G be a graph and let Ξ(G) ∈ 	(G) [use Defi-
nition 2.2]. We say that Ξ(G) is the canonical coloration of G, if and only if, 	(G) = {Ξ(G)}
[observe that such a canonical coloration does not always exist].

Using the denotation of 	(G) [ use Definition 2.2], then the following Assertion is immediate.

Assertion 2.4. Let G ∈ Ω and let Ξ(G) ∈ 	(G). Then Ξ(G) is the canonical coloration of
G [i.e.	(G) = {Ξ(G)}, by Definition 2.3].
Proof. Immediate, by observing that G ∈ Ω. 2

So, let G ∈ Ω and let Ξ(G) ∈ 	(G); then Assertion 2.4 clearly says that Ξ(G) is the canonical
coloration of G [indeed, we have no choice, since 	(G) = {Ξ(G)}].
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Definition 2.5 (Uniform graph) Let G ∈ Ω and let Ξ(G) be the canonical coloration of G [observe
that Ξ(G) exists, via Assertion 2.4]; we say that G is uniform, if for every Y ∈ Ξ(G), we have
card(Y ) = α(G), where card(Y ) is the cardinality of Y and where α(G) is the stability number
of G.

Definition 2.5 gets sense, since G ∈ Ω and so Ξ(G) is canonical [via Assertion 2.4]. Using the
definition of a uniform graph [use Definition 2.5], then the following Assertion is immediate.

Assertion 2.6. Let G ∈ Ω and let Ξ(G) be the canonical coloration of G [observe that Ξ(G)
exists, via Assertion 2.4]. We have the following trivial properties.
(2.6.0). If 0 ≤ ω(G) ≤ 1, then G is uniform.
(2.6.1). If 0 ≤ α(G) ≤ 1, then G is uniform.
(2.6.2). If G is a complete graph, then G is uniform.
(2.6.3). If α(G) ≥ 2 and if for every Y ∈ Ξ(G) we have card(Y ) = α(G), then G is uniform and
is not a complete graph.
Proof. Properties (2.6.0) and (2.6.1) are trivial [it suffices to observe that G ∈ Ω and to use Defi-
nition 2.5]; property (2.6.2) is an immediate consequence of property (2.6.1); and property (2.6.3)
is trivial (indeed, observe [by the hypotheses] that G ∈ Ω and use Definition 2.5).2

Uniform graphs have nice properties when we study isomorphism of graphs.
Recall 2.7. Recall that two graphs are isomorphic if there exists a one to one correspondence be-
tween their vertex set that preserves adjacency.

Assertion 2.8. Let G ∈ Ω; then there exists a uniform graph U which is isomorphic to a parent of
G [use Definition 1.3 for the meaning of parent].
Proof. If 0 ≤ ω(G) ≤ 1, clearly G is uniform [use property (2.6.0) of Assertion 2.6]; now
put U = G, clearly U is a uniform graph which is a parent of G. Now, if ω(G) ≥ 2, let
Ξ(G) be the canonical coloration of G [observe that Ξ(G) exists, by remarking that G ∈ Ω and
by using Assertion 2.4]; since it is immediate that χ(G) = ω(G), clearly Ξ(G) is of the form
Ξ(G) = {Y1, ..., Yω(G)}. Now let Q be a graph defined as follows: (i) Ξ(Q) = {Z1, ..., Zω(G)}
is a partition of V (Q) into ω(G) stable sets such that, x ∈ Zj ∈ Ξ(Q), y ∈ Zk ∈ Ξ(Q)
and j 6= k, ⇒ x and y are adjacent in Q; (ii) For every j = 1, 2, ..., ω(G) and for every
Zj ∈ Ξ(Q) = {Z1, ..., Zω(G)}, card(Zj) = α(G). Clearly Q ∈ Ω, card(V (Q)) = ω(G)α(G),
Q is uniform, χ(Q) = ω(Q) = ω(G) = χ(G), and visibly, G is isomorphic to a subgraph of Q;
observe that Q is isomorphic to a true pal of G and Q ∈ Ω [since G is isomorphic to a subgraph of
Q and χ(Q) = ω(Q) = ω(G) = χ(G) and Q ∈ Ω] and Q is uniform. Using the previous and the
definition of a parent, then we immediately deduce that Q is a uniform graph which is isomorphic
to a parent of G. Now put Q = U ; clearly U is a uniform graph which is isomorphic to a parent of
G. Assertion 2.8 follows.2

Now the following assertion is only an immediate consequence of Assertion 2.8.
Assertion 2.9. Let H be a graph [H is not necessarily in Ω]; then there exists a uniform graph U
which is isomorphic to a parent of H .
Proof. Let P be a parent of H [such a P exists via Assertion 1.4] and let U be a uniform graph
such that U is isomorphic to a parent of P [such a U exists, by observing that P ∈ Ω and by
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using Assertion 2.8]; clearly U is a uniform graph and is isomorphic to a parent of H [since U is a
uniform graph which is isomorphic to a parent of P and P is a parent of H] .2

Now we define relative subgraphs.

Definition 2.10 (relative subgraph). Let G and F be uniform. Now let Ξ(G) be the canonical col-
oration of G and let Ξ(F ) be the canonical coloration of F [observe that the couple (Ξ(G),Ξ(F ))
exists, by remarking that G ∈ Ω and F ∈ Ω, and by using Assertion 2.4]. We say that F is a
relative subgraph of G, if Ξ(F ) ⊆ Ξ(G) (it is immediate that the previous gets sense, since in
particular (G,F ) ∈ Ω × Ω [because G and F are uniform], and so Ξ(G) and Ξ(F ) are canonical
[by using Assertion 2.4 and Definition 2.3]. It is also immediate that relative subgraphs are defined
for uniform graphs, and only for uniform graphs).

Using the definition of a relative subgraph [use Definition 2.10] and the definition of a uniform
graph [ use Definition 2.5], then the following assertion is immediate and will help us later.

Assertion 2.11. Let (P,U) be a couple of uniform graphs such that ω(P ) ≥ 1 and ω(U) ≥ 1.
Now let Ξ(P ) be the canonical coloration of P and let Ξ(U) be the canonical coloration of U
[observe that the couple (Ξ(P ),Ξ(U)) exists, by remarking that P ∈ Ω and U ∈ Ω, and by using
Assertion 2.4]. Then we have the following trivial properties.
(2.11.0). If U is a relative subgraph of P , then α(U) = α(P ) and ω(U) ≤ ω(P ).
(2.11.1). If U is a relative subgraph of P and if ω(U) = ω(P ) , then U = P .
(2.11.2). If U is a relative subgraph of P and if ω(U) < ω(P ), then there exists Y ∈ Ξ(P ) such
that U is a relative subgraph of P \ Y .
(2.11.3). If α(U) = α(P ) and ω(U) = ω(P ), then U and P are isomorphic.
(2.11.4). If ω(P ) ≥ 2, then, for every Y ∈ Ξ(P ), P \ Y is a relative subgraph of P and P \ Y is
uniform and ω(P \ Y ) = ω(P )− 1 and α(P \ Y ) = α(P ).

Proof. Properties (2.11.0) and (2.11.1) and (2.11.2) are immediate [it suffices to use the definition
of a uniform graph and the definition of a relative subgraph]. Properties (2.11.3) and (2.11.4) are
trivial consequences of the definition of uniform graphs and relative subgraphs. 2

We will see in Section 4 that uniform graphs and relative subgraphs play a major role in the
proof of Theorem which immediately implies the Berge problem. Now we introduce again defini-
tions that are not standard; in particular, we introduce a graph parameter denoted by b and called
the berge caliber [the berge caliber b is related to the berge index β introduced in Definitions 1.7
(Section 1)], and using the parameter b on uniform graphs, we prove an elementary proposition
which will help us in Section 4 to prove the Berge problem and the Berge conjecture. Before, let
us define.

Definition 2.12 (Fundamental) We say that a graph G is bergerian, if G is uniform and if ω(G) =
β(G) [use Definitions 1.7 for the meaning of β(G) and Definition 2.5 for the meaning of uniform].

The following two assertions are obvious consequences of Remark 2.1 and Definition 2.12.

9
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Assertion 2.13. Let K be a complete graph; then K is bergerian.
Proof. Immediate, and is a consequence of Remark 2.1 and Definition 2.12 and property (2.6.2) of
Assertion 2.6.2

Assertion 2.14. The set of all complete graphs is an obvious example of bergerian graphs.
Proof. Immediate, and is a trivial consequence of Assertion 2.13.2

Definitions 2.15 (bergerian subgraph and maximal bergerian subgraph). Let G be uniform. We
say that a graph F is a bergerian subgraph of G, if F is bergerian and is a relative subgraph of G
[use Definition 2.10 for the meaning of a relative subgraph and Definition 2.12 for the meaning of
bergerian ]. We say that F is a maximal bergerian subgraph of G [we recall that G is uniform], if
F is a bergerian subgraph of G and ω(F ) is maximum for this property [it is immediate that such
a F exists and is well defined].

Now we define the berge caliber.
Definition 2.16 (berge caliber). Let G be uniform, and let F be a maximal bergerian subgraph
of G [use Definitions 2.15], then the berge caliber of G is denoted by b(G), where b(G) = ω(F ).

The following remark clearly shows that for every uniform graph G, b(G) exists and is well
defined.

Remark 2.17.For every uniform graph G, the berge caliber b(G) exists and is well defined.
Proof. Let G be uniform and let F be a maximal bergerian subgraph of G [use Definitions 2.15];
observing [by definition of a maximal bergerian subgraph of G] that F is a bergerian subgraph
of G and ω(F ) is maximum for this property, clearly ω(F ) is unique and therefore b(G) is also
unique, since b(G) = ω(F ). So b(G) exists and is well defined. 2

It is immediate that the berge caliber [i.e. the graph parameter b] is defined for uniform graphs
and only for uniform graphs. We will see in Section 4 that the berge caliber plays a crucial role in
the proof of Theorem which immediately implies the Berge problem. Now, using the definition of
a uniform graph, the definition of a relative subgraph and the definition of the berge caliber, then
the following assertion is immediate.

Assertion 2.18. Let G be uniform and let b(G) be the berge caliber of G. Consider β(G) [β(G) is
the berge index of G (use Definitions 1.7)]. We have the following six properties.
(2.18.0) ω(G) ≥ b(G).
(2.18.1) G is bergerian⇔ β(G) = ω(G) = b(G)⇔ β(G) = ω(G)⇔ b(G) = ω(G).
(2.18.2) G is not bergerian⇔ ω(G) > b(G)⇔ ω(G) 6= β(G).
(2.18.3) If ω(G) ∈ {0, 1, 2}, then b(G) = ω(G) = β(G) [i.e.G is bergerian].
(2.18.4) If ω(G) ≥ j [where j ∈ {0, 1, 2}], then b(G) ≥ j.
(2.18.5) For every relative subgraph R of G, we have b(R) ≤ b(G).

Proof. Property (2.18.0) is immediate [use the definition of b(G)]; properties (2.18.1) and (2.18.2)
are trivial [use the definitions of b(G) and β(G)]. Property (2.18.3) is easy (indeed, let G be uni-

10
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form such that ω(G) = j where j ∈ {0, 1, 2}, clearly χ(G) = j where j ∈ {0, 1, 2}; observe
that ω(G) = β(G) [use the previous and property (3) of Assertion 1.9]. Now using the previous
equality and property (2.18.1), then it becomes trivial to deduce that b(G) = ω(G) = β(G) and
G is bergerian). Property (2.18.4) is an immediate consequence of property (2.18.3) and property
(2.18.5) immediately results via the definition of a relative subgraph [use Definition 2.10] and the
definition of the parameter b [use Definition 2.16]. 2

The previous definitions and simple properties made, now the following trivial proposition is
crucial for the proof of the Berge problem and the Berge conjecture.

Proposition 2.19 (The trivial reformulation of the Berge problem). The following are equiva-
lent.
(i) For every uniform graph U , we have ω(U) = b(U).
(ii) The Berge problem is true [i.e. For every berge graph B′, we have χ(B′) = ω(B′)].
Proof. (i)⇒ (ii)]. Indeed, observe [by the hypotheses] that for every uniform graph U , we have
ω(U) = b(U); now using the previous and property (2.18.1) of Assertion 2.18, then it becomes
trivial to deduce that

for every uniform graphU, we haveω(U) = b(U) = β(U). (2.1)

Now let B be berge and let P be uniform such that P is isomorphic to a parent of B [such a P
clearly exists, via Assertion 2.9], clearly

β(P ) ≤ ω(B) (2.2)

[by observing that in particular P is isomorphic to a parent of B and by using Remark 2.0]. It
trivial that

ω(B) ≤ χ(B). (2.3)

Since in particular P is isomorphic to a parent of B, clearly P is isomorphic to a true pal of B and
so

χ(P ) = χ(B). (2.4)

Clearly ω(P ) = χ(P ) [since P ∈ Ω], and using the previous equality, then it becomes trivial to
deduce that equality (2.4) clearly says that

ω(P ) = χ(B). (2.5)

Recalling that P is uniform and using (2.1), then it becomes trivial to deduce that

ω(P ) = b(P ) = β(P ). (2.6)

Now using (2.2) and (2.3) and (2.5) and (2.6), then it becomes trivial to deduce that

β(P ) ≤ ω(B) ≤ χ(B) ≤ ω(P ) ≤ b(P ) ≤ β(P ). (2.7)

11
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(2.7) immediately implies that

β(P ) = ω(B) = χ(B) = ω(P ) = b(P ). (2.8)

Clearly ω(B) = χ(B) [use (2.8)], and the previous equality clearly says that the Berge problem is
true for B; using the previous and observing that the berge graph B was arbitrary chosen, then it
becomes trivial to deduce that every berge graphB′ satisfies ω(B′) = χ(B′); so the Berge problem
is true and therefore (i)⇒ (ii).
(ii) ⇒ (i). Immediate (indeed, if the Berge problem is true [i.e. if for every berge graph B′, we
have χ(B′) = ω(B′)], then, using Theorem 1.8, we immediately deduce that

for every G ∈ Ω, we have ω(G) = β(G). (2.9)

Now let U be uniform; observing that U ∈ Ω and using (2.9), then we immediately deduce that

for every uniform graph U, we have ω(U) = β(U). (2.10)

Now using (2.10) and property (2.18.1) of Proposition (2.18), then it becomes trivial to deduce that
for every uniform graph U , we have ω(U) = b(U). So (ii)⇒ (i)) Proposition 2.19 follows. 2

In Section 4, Proposition 2.19 coupled with trivial complex calculus and elementary computa-
tion we help us to give the short proof of the Berge problem and the Berge conjecture.

3. Isomorphism of uniform graphs, properties linked to trivial complex calculus on uniform
graphs, elementary computation, and the reduction of the Berge problem into a simple
equation of three unknowns

In this section, we prove elementary properties linked to trivial complex calculus on uniform
graphs and elementary computation; and we reduce the Berge problem into a simple equation of
three unknowns. We will use them in Section 4, where we will give the short complete simple
proof of the Berge problem and the Berge conjecture [In this Section, we let one Proposition un-
proved and we will prove this Proposition in Section 3’ (Epilogue)]. In this section, the definition
of a uniform graph [use Definition 2.5 ], the definition of a relative subgraph [use Definition 2.10 ],
the definition of the berge caliber b(G) of a uniform graph G [use Definition 2.16 ], are crucial.
Before, let us remark that uniform graphs and relative subgraphs have interesting properties when
we study isomorphism of graphs. Indeed, using the definition of uniform graphs and the definition
of relative subgraphs and the definition of isomorphism [use Remark 2.7], then the following Re-
mark becomes immediate:

Remark 3.0. Let U and U ′ be uniform graphs such that ω(U) ≥ 2 and ω(U ′) ≥ 1. Now let Ξ(U)
be the canonical coloration of U [observe that Ξ(U) exists, by remarking that U ∈ Ω (since U is
uniform) and by using Assertion 2.4], and let (Y, Y ′) ∈ Ξ(U)× Ξ(U); look at the couple (U \ Y ,
U \Y ′) [recall that U \Z is the induced subgraph of U by V (U) \Z]. Then we have the following
four simple properties.

(i) U and U ′ are isomporphic, if and only if, ω(U) = ω(U ′) and α(U) = α(U ′).

12
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(ii) U ′ is isomorphic to a relative subgraph of U if and only if ω(U) ≥ ω(U ′) and α(U) = α(U ′).
(iii) U \ Y is uniform and ω(U \ Y ) = ω(U)− 1 and α(U \ Y ) = α(U) and ω(U \ Y ) ≥ 1 and

U \ Y is a relative subgraph of U .
(iv) U \ Y is isomorphic to U \ Y ′.

Proof. Property (i) is immediate [indeed, observe that U and U ′ are uniform graphs and use the
definition of uniform graphs]. Property (ii) is trivial [indeed, observe that U and U ′ are uniform
graphs and use the definition of uniform graphs and the definition of relative subgraphs]. Property
(iii) is immediate [indeed since Y ∈ Ξ(U), then it becomes trivial to see that U \ Y is a relative
subgraph of U and U \ Y is uniform and ω(U \ Y ) = ω(U) − 1 and α(U \ Y ) = α(U) and
ω(U \ Y ) ≥ 1]. Property (iv) is very easy [indeed, it is trivial that U \ Y and U \ Y ′ are uniform
such that ω(U \ Y ) ≥ 1 and ω(U \ Y ) = ω(U \ Y ′) and α(U \ Y ) = α(U \ Y ′); so U \ Y is
isomorphic to U \ Y ′, by using the previous and property (2.11.3) of Assertion 2.11 ]. 2

Proposition 3.1. Let U be uniform such that ω(U) ≥ 2 and let Ξ(U) be the canonical coloration of
U [observe that Ξ(U) exists, by remarking that U ∈ Ω (since U is uniform) and by using Assertion
2.4]; now let Y ∈ Ξ(U) and look at the couple ( b(U), b(U \ Y ) ), where b(U) is the berge caliber
of U and b(U \ Y ) the berge caliber of U \ Y [recall that U \ Y is the induced subgraph of U by
V (U) \ Y ]. If ω(U) > b(U), then b(U \ Y ) = b(U).

Proof. Indeed, let F ′ be a maximal bergerian subgraph of U ; since ω(U) > b(U) [by the hypothe-
ses], then, using the previous inequality coupled with the definition of F ′ [note that ω(F ′) = b(U),
via the definition of F ′], it becomes trivial to deduce that

there exists Y ′ ∈ Ξ(U) such that Y ′ 6∈ Ξ(F ′), (3.0)

where Ξ(F ′) is the canonical coloration of F ′. (3.0) immediately implies that

F ′ is also a maximal bergerian subgraph of U \ Y ′. (3.1)

It is trivial that (3.1) clearly says that

ω(F ′) = b(U \ Y ′). (3.2)

Recalling that F ′ is a maximal bergerian subgraph of U [ and so ω(F ′) = b(U)] and using equality
(3.2), then it becomes trivial to deduce that

b(U) = b(U \ Y ′). (3.3)

Now let Y ∈ Ξ(U); observing that U \ Y is isomorphic to U \ Y ′ [use property (iv) of Remark
3.0], and using equality (3.3), then it becomes trivial to deduce that b(U) = b(U \ Y ). Proposition
3.1 follows. 2

Proposition 3.1 will help us to simplify complex calculus on uniform graphs.
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Recalls and Definitions 3.2 (Fundamental). (Real numbers, complex numbers, C, LU and tackle).
Recall that R is the set all real numbers and θ is a complex number if θ = x + iy, where x ∈ R,
y ∈ R and i2 = −1; C is the set of all complex numbers. That being said, clearly

C2 = {(x, y); x ∈ C and y ∈ C}, C2 ×R = {(x, y, k); (x, y) ∈ C2 and k ∈ R}

and
C3 = {(x, y, z); (x, y) ∈ C2 and z ∈ C}.

Now let n be an integer ≥ 1 and let U be uniform such that ω(U) = n; look at the berge caliber
b(U) [use Definition 2.16 for b(U)] and denote LU = 2b(U)+2; we say that (φ(U), ν(U), ε(U)) ∈
C3 tackles (1, 3iL−1U ) around 6LU − 19 − iLU + 11iL2

U − 18i, if there exists (x, y, k) ∈ C2 ×R
such that

x+ 3iyL−1U + k(6LU − 19− iLU + 11iL2
U − 18i) + φ(U) = 0

where x+ y − ν(U) = 0 andx− y − ε(U) = 0.

We will see that the definition of tackle introduced above helps to reduce the Berge problem
into an elementary equation of three unknowns. Before, let us define:

Definitions 3.3 (Fundamental). Let n be an integer ≥ 1 and let U be a uniform graph such that
ω(U) = n; look at LU [use Recalls and Definitions 3.2]. Now let (φ(U), ν(U), ε(U)), where

φ(U) =
4∑
j=1

φ(U.j) (3.4)

and where

φ(U.1) =
1

1331

(
126301iL−3U + 2273418iL−4U − 23837LU − 357566L−1U +

2010800L−2U + 2399719L−4U − 757806L−3U
)
, (3.5)

φ(U.2) =
(
(2n+ 1)2 − 1− L2

U − 2LU)(16L−3U + 50L−2U + 11iL−3U − 13i+ 5iLU
)

+
(LU − 2n)

2
(8LU − 8i− 16), (3.6)

φ(U.3) = ((2n+ 1)2 − 1−L2
U + 2LU)(34iL−2U − 70iL−3U − 11i+ 5 + 6iLU) +

289080

1331
, (3.7)

and

φ(U.4) = ((2n+1)2−1−L2
U +7LU)(11iLU +7−50L−1U +23iL−3U −54L−3U )− 1003112i

1331
; (3.8)

ν(U) = ( iLU − 4in− 4i+ 1 )2 − 1 + L2
U , (3.9)

and

ε(U) = 4((2n+ 1)2 − 1− L2
U + LU) + ( iLU − 2in+ 1 )(4iLU + 4− 8i). (3.10)

14
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It is immediate that for every integer n ≥ 1 and for every uniform graph U such that ω(U) = n,
(φ(U), ν(U), ε(U)) is well defined and gets sense. Now using the notion of tackle (use Recalls
and Definition 3.2), then the following Theorem immediately implies the Berge problem.

Theorem B. Let n be an integer ≥ 1 and let (U,Q) be a couple of uniform graphs such that
ω(Q) = n + 1 and U is a relative subgraph of Q with ω(U) = n; consider (b(U),LU , b(Q))
[where b(U) is the berge caliber of U , LU is introduced in Recalls and Definitions 3.2 and b(Q)
is the berge caliber of Q]. Now look at (φ(U), ν(U), ε(U)) introduced in Definitions 3.3. Then at
least one of the following three properties is satisfied.
(A1). U is a complete graph.
(A2). ω(Q) = b(Q) = b(U) + 1.
(A3). (φ(U), ν(U), ε(U)) tackles (1, 3iL−1U ) around 6LU − 19− iLU + 11iL2

U − 18i (use Recalls
and Definitions 3.2 for the meaning of tackle and LU ).

We will simply prove Theorem B in Section 4. But before, let us remark.

Remark 3.4 (fundamental) Let (n, U) where n is an integer ≥ 1 and U is a uniform graph such
that ω(U) = n; consider LU (use Recalls and Definitions 3.2) and look at (φ(U), ν(U), ε(U))
introduced in Definitions 3.3. If LU = 2n+ 2, then (φ(U), ν(U), ε(U) ) tackles (1, 3iL−1U ) around
6LU − 19− iLU + 11iL2

U − 18i (use Recalls and Definitions 3.2 for the meaning of tackle).

Proof. Indeed, observing (via the hypotheses) that LU = 2n+ 2 and using the preceding equality,
we easily deduce that

LU−2n = 2; iLU−4in−4i+1 = 1−iLU ; 2n+1 = LU−1; and iLU−2in+1 = 2i+1. (3.11)

Now look at (φ(U), ν(U), ε(U) ) introduced in Definitions 3.3 and let (φ(U.2), φ(U.3), φ(U.4))
explicited in Definitions 3.3. Clearly

φ(U.2) = −4LU(16L−3U + 50L−2U + 11iL−3U − 13i+ 5iLU) + 8LU − 8i− 16 (3.12)

(use (3.6) of Definitions 3.3 and the third equality of (3.11) (observe [via the third equality of
(3.11)] that (LU − 1)2 = L2

U − 2LU + 1); and the first equality of (3.11) (observe [via the first
equality of (3.11)] that (LU−2n)

2
= 1)), and

φ(U.3) =
289080

1331
(3.13)

(use (3.7) of Definitions 3.3 and the third equality of (3.11) (observe [via the third equality of
(3.11)] that (LU − 1)2 = L2

U − 2LU + 1)), and

φ(U.4) = 5LU(11iLU + 7− 50L−1U + 23iL−3U − 54L−3U )− 1003112i

1331
(3.14)

(use (3.8) of Definitions 3.3 and the third equality of (3.11) (observe [via the third equality of
(3.11)] that (LU−1)2 = L2

U−2LU +1)). That being said let (ν(U), ε(U)) explicited in Definitions
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3.3; clearly
ν(U) = ( 1− iLU )2 − 1 + L2

U (3.15)

(use (3.9) of Definitions 3.3 and the second equality of (3.11)), and clearly

ε(U) = 4( (LU − 1)2 − 1− L2
U + LU ) + ( 2i+ 1 )( 4iLU + 4− 8i ) (3.16)

(use (3.10) of Definitions 3.3 and the last two equalities of (3.11)). That being so, let (x, y, k)
such that

x = 10−6LU+iLU ; y = −10+6LU−3iLU ; and k = −35

11
− 618L−1U

121
+

7494L−2U
121

+
126301L−4U

1331
,

(3.17)
and let (φ(U), ν(U), ε(U), x, y, k ) where (x, y, k) is explicted in (3.17) and where (φ(U), ν(U),
ε(U)) is introduced in Definitions 3.3. Now consider ( ν(U), ε(U), x, y ); using (3.15) and (3.16)
and the first two equalities of (3.17), we easily check (by elementary computation and the fact that
i2 = −1) that

x+ y − ν(U) = 0 and x− y − ε(U) = 0. (3.18)

That being so, look again at (φ(U), ν(U), ε(U), x, y, k ) and let (φ(U), x, y, k ); using the three
equalities of (3.17), it becomes very easy to check (by elementary computation and the fact that
i2 = −1) that

x+ 3iyL−1U + k(6LU − 19− iLU + 11iL2
U − 18i) + φ(U) = 0; k ∈ R and φ(U) =

4∑
j=1

φ(U.j).

(3.19)

(use the three equalities of (3.17) [for x and y and k]; and (3.5) [for φ(U.1)]; and (3.j + 10) [for
φ(U.j) where 2 ≤ j ≤ 4]; and (3.4) [for φ(U)]). Clearly (φ(U), ν(U), ε(U) ) tackles (1, 3iL−1U )

around 6LU−19− iLU +11iL2
U−18i (use (3.18) and (3.19) and the notion of tackle introduced in

Recalls and Definitions 3.2 [observe that (x, y) ∈ C2 and k ∈ R; so (x, y, k) ∈ C2 ×R]). Remark
3.4 follows.

Remark 3.5 (fundamental): reduction of the Berge problem into a trivial equation of three
unknowns. Let (n, U) where n is an integer ≥ 1 and U is a uniform graph such that ω(U) = n;
consider LU (use Recalls and Definitions 3.2) and look at (φ(U), ν(U), ε(U) ) introduced in Re-
calls and Definitions 3.2. If LU = 2n, then (φ(U), ν(U), ε(U) ) does not tackle (1, 3iL−1U ) around
6LU − 19− iLU + 11iL2

U − 18i ( use Recalls and Definition 3.2 for the meaning of tackle ).
Proof. Indeed, observing (via the hypotheses) that LU = 2n and using the preceding equality, we
easily deduce that

LU−2n = 0; iLU−4in−4i+1 = 1−4i−iLU ; 2n+1 = LU+1; and iLU−2in+1 = 1. (3.20)

Now look at (φ(U), ν(U), ε(U) ) introduced in Definitions 3.3 and let (φ(U.2), φ(U.3), φ(U.4))
explicited in Definitions 3.3. Clearly

φ(U.2) = 0 (3.21)
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(use (3.6) of Definitions 3.3 and the third equality of (3.20) (observe [via the third equality of
(3.20)] that (LU + 1)2 = L2

U + 2LU + 1); and the first equality of (3.20) (observe [via the first
equality of (3.20)] that (LU−2n)

2
= 0)), and

φ(U.3) = 4LU(34iL−2U − 70iL−3U − 11i+ 5 + 6iLU) +
289080

1331
(3.22)

(use (3.7) of Definitions 3.3 and the third equality of (3.20) (observe [via the third equality of
(3.20)] that (LU + 1)2 = L2

U + 2LU + 1)), and

φ(U.4) = 9LU(11iLU + 7− 50L−1U + 23iL−3U − 54L−3U )− 1003112i

1331
(3.23)

(use (3.8) of Definitions 3.3 and the third equality of (3.20) (observe [via the third equality of
(3.20)] that (LU +1)2 = L2

U +2LU +1)). That being said let (ν(U), ε(U)) explicited in Definitions
3.3; clearly

ν(U) = ( 1− 4i− iLU )2 − 1 + L2
U (3.24)

(use (3.9) of Definitions 3.3 and the second equality of (3.20)) and clearly

ε(U) = 4( (LU + 1)2 − 1− L2
U + LU ) + 4iLU + 4− 8i (3.25)

(use (3.10) of Definitions 2.3 and the last two equalities of (3.20)). That being so, let (x, y) such
that

x = 2LU + iLU − 6− 8i and y = −10− 10LU − 3iLU , (3.26)

and let (φ(U), ν(U), ε(U), x, y ) where (x, y) is explicted in (3.26) and where (φ(U), ν(U), ε(U))
is introduced in Definitions 3.3 (use (3.4) for φ(U); and (3.9) for ν(U); and (3.10) for ε(U); and
(3.26) for (x, y)). Using (3.24) and (3.25) and the two equalities of (3.26), then we easily check
(by elementary computation and the fact that i2 = −1) that

x+ y − ν(U) = 0 and x− y − ε(U) = 0. (3.27)

That being said, we have this fact.
Fact.0.

there exists not k ∈ R such that x+ 3iyL−1U + k(6LU − 19− iLU + 11iL2
U − 18i) + φ(U) = 0.

Otherwise (we reason by reduction to absurd)

Let k ∈ R such that x+ 3iyL−1U + k(6LU − 19− iLU + 11iL2
U − 18i) + φ(U) = 0. (3.28)

It is immediate to see that (3.28) says that

x+3iyL−1U +φ(U) = −k(6LU−19−iLU+11iL2
U−18i); k ∈ R and φ(U) =

4∑
j=1

φ(U.j) (3.29)

17



www.ijc.or.id

The complete short proof of the Berge conjecture | Ikorong Annouk

(use (3.4) for φ(U)). Now let (φ(U), ν(U), ε(U), x, y ) explicited above; consider (φ(U), x, y) and
look at (3.29); using elementary computation and elementary divisibility coupled with the fact that
i2 = −1 and k ∈ R, it becomes very easy to check that (3.29) immediately implies that

k = kn.1 = kn.2, (3.30)

where

kn.1 =
−23837LU − 357566L−1U + 2010800L−2U + 2399719L−4U − 757806L−3U + 289080

1331(19− 6LU)
+

85LU − 447− 486L−3U
19− 6LU

. (3.31)

and

kn.2 =
2273418L−4U + 126301L−3U − 1003112

1331(LU − 11L2
U + 18)

+
123L2

U + 106L−1U − 38− 43LU − 73L−2U
LU − 11L2

U + 18
(3.32)

(via (3.29), use the two equalities of (3.26) [for x and y]; and (3.5) [for φ(U.1)]; and (3.j+19) [for
φ(U.j) where 2 ≤ j ≤ 4]; and (3.4) [for φ(U)]). That being so, using (3.30) and (3.31) and (3.32),
then we immediately deduce (via elementary computation and the fact that kn.1 = kn.2 ) that

10996722L−2U − 11643588L−3U − 7115526 + 7762392L−1U = 0. (3.33)

Equality (3.33) is clearly impossible (since LU ≥ 4 [ indeed recall that LU = 2b(U) + 2 (use
Recalls and Definitions 3.2), and since n ≥ 1, clearly b(U) ≥ 1 (recall that n = ω(U) where
n ≥ 1 and use property (2.18.4) of Assertion 2.18) and so LU ≥ 4] and therefore

10996722L−2U − 11643588L−3U − 7115526 + 7762392L−1U < 0).

So assuming that

there exists k ∈ R such that x+ 3iyL−1U + k(6LU − 19− iLU + 11iL2
U − 18i) + φ(U) = 0

gives rise to a serious contradiction; therefore

there exists not k ∈ R such that x+ 3iyL−1U + k(6LU − 19− iLU + 11iL2
U − 18i) + φ(U) = 0.

Fact.0. follows.
Clearly (φ(U), ν(U), ε(U) ) does not tackle (1, 3iL−1U ) around 6LU − 19− iLU + 11iL2

U − 18i

(use (3.27) and Fact.0 and the notion of tackle introduced in Recalls and Definitions 3.2). Remark
3.5 follows.

Remark.3.5 reduces the Berge problem into a simple equation of three unknowns. Indeed Re-
mark 3.5 clearly says that, if LU = 2n [U is a uniform graph with ω(U) = n], we will have a sim-
ple equation of three unknowns which implies that (φ(U), ν(U), ε(U) ) does not tackle (1, 3iL−1U )
around 6LU − 19 − iLU + 11iL2

U − 18i. We will use Remark 3.5 in Section 4 to immediately
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deduce the Berge problem and the Berge conjecture. Now using Definitions 3.3, then we have the
following elementary Proposition.

Proposition 3.6. Let (n, U) where n is an integer ≥ 2 and U is a uniform graph such that
ω(U) = n; consider LU ( use Recalls and Definitions 3.2) and look at (φ(U), ν(U), ε(U) ) in-
troduced in Definitions 3.3. Now let Ξ(U) be the canonical coloration of U (use Definition 2.3),
and let Y ∈ Ξ(U); look at (U \ Y, b(U \ Y ),LU\Y ) [ where U \ Y is the induced subgraph
of U by V (U) \ Y ; b(U \ Y ) is the berge caliber of U \ Y and LU\Y = 2b(U \ Y ) + 2]. Via
(φ(U), ν(U), ε(U) ) introduced in Definitions 3.3, consider (φ(U \ Y ), ν(U \ Y ), ε(U \ Y ) ) (this
consideration gets sense, since U is uniform such that ω(U) = n with n ≥ 2 and therefore U \ Y
is uniform such that ω(U \Y ) = n− 1 [use property (2.11.4) of Assertion 2.11], with n− 1 ≥ 1) .
If the berge caliber b(U) is of the form b(U) ≤ n−1, then LU ≤ 2n and (φ(U \Y )−φ(U), ν(U \
Y )− ν(U), ε(U \ Y )− ε(U) ) tackles (1, 3iL−1U ) around 6LU − 19− iLU + 11iL2

U − 18i.
Proposition 3.6 is not very difficult to prove and we will prove Proposition 3.6 in Section 3’

(Epilogue). The previous simple Proposition made, we are now ready to give the short complete
simple proof of the Berge problem and the Berge conjecture.

4. The proof of the Berge problem and the Berge conjecture

In this Section, using the trivial reformulation of the Berge problem given by Proposition 2.19
and simple properties of Section 3, we give the short complete simple proof of the Berge problem
and the Berge conjecture. In this section, the definition of a uniform graph (use Definition 2.5), the
definition of a relative subgraph (use Definition 2.10), the definition of berge caliber (use Definition
2.16), the definition of tackle (use Recalls and Definitions 3.2) and (φ(U), ν(U), ε(U) ) introduced
in Definitions 3.3, are fundamental and crucial. Now the following Theorem immediately implies
the Berge problem and the Berge conjecture.

Theorem 4.1. Let n be an integer ≥ 1 and let (U,Q) be a couple of uniform graphs such that
ω(Q) = n + 1 and U is a relative subgraph of Q with ω(U) = n; consider (b(U),LU , b(Q))
[where b(U) is the berge caliber of U , LU is introduced in Recalls and Definitions 3.2 and b(Q)
is the berge caliber of Q]. Now look at (φ(U), ν(U), ε(U) ) introduced in Definitions 3.3. Then at
least one of the following three properties is satisfied.
(A1). U is a complete graph.
(A2). ω(Q) = b(Q) = b(U) + 1.
(A3). (φ(U), ν(U), ε(U) ) tackles (1, 3iL−1U ) around 6LU − 19− iLU + 11iL2

U − 18i (use Recalls
and Definitions 3.2 for the meaning of tackle]).

Observe that Theorem 4.1 is exactly Theorem.B stated after Definitions 3.3 (Section 3). We
are going to prove simply Theorem 4.1. But before, let us remark.

Remark 4.1′. Let n be an integer ≥ 2 and let U be uniform such that ω(U) = n; consider the
canonical coloration Ξ(U) of U [observe that Ξ(U) exists, by remarking that U ∈ Ω (since U is
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uniform) and by using Assertion 2.4]. Now let Y ∈ Ξ(U) and look at the couple ( b(U), b(U \Y ) ),
where b(U) is the berge caliber of U and b(U \ Y ) the berge caliber of U \ Y [recall that U \ Y
is the induced subgraph of U by V (U) \ Y ]. If U is bergerian, then U \ Y is also bergerian .
Proof. Observe that

b(U) = ω(U) (4.0)

[note that U is bergerian and use property (2.18.1) of Assertion 2.18], and notice that

U \ Y is uniformsuch that ω(U \ Y ) = ω(U)− 1 = n− 1 and n− 1 ≥ 1 (4.1)

[note that U is uniform such that n = ω(U) ≥ 2, Y ∈ Ξ(U), and use property (iii) of Remark
3.0]. Clearly

b(U \ Y ) = ω(U \ Y ) = ω(U)− 1 (4.2)

[use (4.0) and (4.1) and the fact that U is bergerian]. So U \ Y is bergerian [ note that U \ Y is
uniform such that ω(U \Y ) = n−1 ≥ 1 ( use (4.1) ) and use (4.2) coupled with property (2.18.1)
of Assertion 2.18]. Remark 4.1′ follows. 2

Remark 4.1′′. Let n be an integer ≥ 2 and let Q be uniform such that ω(Q) = n. Now let U be a
relative subgraph of Q. If Q is bergerian, then U is also bergerian .
Proof. (We reason by reduction to absurd). Indeed letQ be a counter-example such that card(V (Q))
is minimun; clearly

U 6= Qandω(Q) ≥ 3 (4.2′)

[otherwise U = Q or ω(Q) = 2, and it becomes immediate to deduce that U is bergerian; a
contradiction]. Now using (4 .2 ′) and the definition of relative subgraph, then we immediately
deduce that

there existsY ∈ Ξ(Q) such thatU is a relative subgraphQ \ Y and

card(V (Q \ Y ) ) < card(V (Q)). (4.2′′)

Clearly U is bergerian [use (4.2′′) and the minimality of card(V (Q)) and Remark 4.1′]; a contra-
diction. Remark 4.1′′ follows. 2
Remark 4.2. Let n be an integer ≥ 1 and let (U,Q) be a couple of uniform graphs such that
ω(Q) = n + 1 and U is a relative subgraph of Q with ω(U) = n; consider (b(U), b(Q)) ( where
b(U) is the berge caliber of U and b(Q) is the berge caliber of Q). We have the following trivial
properties.
(4.2.0.) If U is a complete graph, then Theorem 4.1 is satisfied.
(4.2.1.) If ω(Q) = b(Q), then Theorem 4.1 is satisfied.
(4.2.2.) If b(U) = n, then Theorem 4.1 is satisfied.
(4.2.3.) If n = 1, then Theorem 4.1 is satisfied.
(4.2.4.) If n = 2, then Theorem 4.1 is satisfied.
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Proof. Property (4.2.0) is immediate. Property (4.2.1) is very easy (indeed if

ω(Q) = b(Q), (4.3)

using equality (4.3) and property (2.18.1) of Assertion 2.18, we immediately deduce that

Q is bergerian. (4.4)

Observing that U is a relative subgraph of Q with ω(U) + 1 = ω(Q), then we immediately deduce
that

there existsY ∈ Ξ(Q) such thatU = Q \ Y where Ξ(Q) is the canonical coloration ofQ (4.5)

[Q \ Y is the induced subgraph of Q by V (Q) \ Y ]. Clearly

U is bergerian (4.6)

[use (4.4) and (4.5) and Remark 4.1′]. Observe that

ω(U) = b(U) (4.7)

[use (4.6) and property (2.18.1) of Assertion 2.18]. So

ω(Q) = b(Q) = b(U) + 1

[use (4.3) and (4.7) and the fact that ω(Q) = ω(U) + 1 = n + 1]. (4.7) clearly says that property
(A2) of Theorem 4.1 is satisfied; therefore Theorem 4.1 is also satisfied. Property (4.2.1) follows).
Property (4.2.2) is immediate (indeed if b(U) = n, observing that n ≥ 1 and U is uniform such
that ω(U) = n, then using the previous and the denotation of LU given in Recall and Definition
3.2, we clearly deduce that LU = 2n + 2; now using the previous equality and Remark 3.4, we
immediately deduce that

(φ(U), ν(U), ε(U) ) tackles (1, 3iL−1U ) around 6LU − 19− iLU + 11iL2
U − 18i. (4.8)

(4.8) clearly says that property (A3) of Theorem 4.1 is satisfied; therefore Theorem 4.1 is also
satisfied. Property (4.2.2) follows).
Property (4.2.3.) is also immediate (indeed, observing (by the hypotheses) that n = 1, clearly

2 = n+ 1 = ω(Q). (4.9)

Since Q is uniform, then, using (4.9) and property (2.18.3) of Assertion 2.18, it becomes very
easy to deduce that

n+ 1 = ω(Q) = b(Q) = β(Q). (4.10)

Clearly
ω(Q) = b(Q) (4.11)
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[use (4.10)]. So Theorem 4.1 is satisfied [use (4.11) and property (4.2.1)]. Property (4.2.3) fol-
lows). Property (4.2.4) is trivial (indeed, observing (by the hypotheses) that n = 2, clearly

2 = n = ω(U). (4.12)

Since U is uniform, then, using (4.12) and property (2.18.3) of Assertion 2.18, it becomes very
easy to deduce that

n = ω(U) = b(U) = β(U). (4.13)

Clearly
b(U) = n (4.14)

[use (4.13)]. So Theorem 4.1 is satisfied [use (4.14) and property (4.2.2)]. Property (4.2.4)
follows.)2

Remark 4.3. Suppose that Theorem 4.1 is false. Then there exists an integer n ≥ 1 which is a
minimum counter-example to Theorem 4.1.
Proof. Immediate. 2

Using Remark 4.3, then the following last definition comes.
Definition 4.4 (Fundamental). Suppose that Theorem 4.1 is false and let n be a minimum
counter-example to Theorem 4.1 (such a n exists, by using Remark 4.3). We say that (U,Q) is a re-
markable couple of uniform graphs, if (U,Q) is a couple of uniform graphs such that ω(Q) = n+1
and U is a relative subgraph of Q with ω(U) = n [n ≥ 1 and n is a minimum counter-example to
Theorem 4.1] and (U,Q) is a counter-example to Theorem 4.1 [it is immediate (via Remark 4.3)
that such a couple of uniform graphs (U,Q) exists, if Theorem 4.1 is false]. Briefly, (U,Q) is a
remarkable couple of uniform graphs if (U,Q) is a counter-example to Theorem 4.1 with ω(U)
minimun (recall that ω(U) = n).
The previous simple remarks and the previous definition made, we now prove simply Theorem 4.1.

Proof of Theorem 4.1. Otherwise (we reason by reduction to absurd), let n be a minimum
counter-example to Theorem 4.1 ( such a n exists, by using Remark 4.3), and let (U,Q) be a
remarkable couple of uniform graphs ( such a couple (U,Q) exists, by using Remark 4.3 and
Definition 4.4); fix once and for all the couple (U,Q) ( the couple (U,Q) is fixed once and for
all, so (U,Q) does not move anymore), and look at (φ(U), ν(U), ε(U) ) introduced in Definitions
3.3. We observe the following.
Observation.4.1.i. n+ 1 = ω(Q); n = ω(U) and (φ(U), ν(U), ε(U) ) does not tackle (1, 3iL−1U )
around 6LU − 19− iLU + 11iL2

U − 18i [ LU = 2b(U) + 2 [use Recalls and Definitions 3.2] and
b(U) is the berge caliber of U].

Immediate, since (U,Q) is a remarkable couple of uniform graphs [ use Remark 4.3 and Defi-
nition 4.4 for the meaning of a remarkable couple of uniform graphs].
Observation.4.1.ii. U is not a complete graph and property (A2) of Theorem 4.1 is not satifised.

Immediate, since (U,Q) is a remarkable couple of uniform graphs.
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Observation.4.1.iii. Let n [ we recall n is a minumun counter-example to Theorem 4.1]. Then
n ≥ 3.

Otherwise
1 ≤ n ≤ 2 (4.15)

[notice that n ≥ 1, by the hypotheses]. Clearly Theorem 4.1 is satisfied (use inequality (4.15) and
property (4.2.3) of Remark 4.2 if n = 1; use inequality (4.15) and property (4.2.4) of Remark 4.2
if n = 2), and we have a contradiction since in particular n is a counter-example to Theorem 4.1.
Observation.4.1.iv. Consider n [we recall n is a minumun counter-example to Theorem 4.1] and
look at the couple (U,Q) [we recall that (U,Q) is a couple of remarkable uniform graphs and is
fixed once and for all]. Now let Ξ(U) be the canonical coloration of U [observe that Ξ(U) exists,
by remarking that U ∈ Ω (since U is uniform) and by using Assertion 2.4], and let Y ∈ Ξ(U); look
at the couple (U \ Y,Q \ Y ) (note that G \ Y is the induced subgraph of G by V (G) \ Y ). Then
n + 1 = ω(Q) ≥ 4; n = ω(U) ≥ 3; ω(Q) = ω(U) + 1; Q \ Y and U \ Y are relative subgraphs
of Q; U \ Y is a relative subgraph of Q \ Y ; ω(Q \ Y ) = ω(Q)− 1 = n; ω(U \ Y ) = n− 1 ≥ 2;
and Ξ(U) ⊆ Ξ(Q).

Clearly
n+ 1 = ω(Q) ≥ 4 andn = ω(U) ≥ 3 andω(Q) = ω(U) + 1 (4.16)

[use Observation.4.1.iii and the first two equalities of Observation.4.1.i], and clearly

Q \ Y andU \ Y are relative subgraphs of Q; U \ Y is a relative subgraph of Q \ Y ;

ω(Q \ Y ) = ω(Q)− 1 = n; ω(U \ Y ) = n− 1 ≥ 2; andΞ(U) ⊆ Ξ(Q)

[Indeed recalling that Y ∈ Ξ(U) and observing that U is a relative subgraph of Q such that
ω(Q) = ω(U) + 1 (because (U,Q) is a couple of remarkable uniform graphs), then using the
preceding and (4.16) via the meaning of a relative subgraph ( use Definition 2.10), it becomes im-
mediate to deduce thatQ\Y and U \Y are relative subgraphs ofQ and U \Y is a relative subgraph
of Q \ Y and ω(Q \ Y ) = ω(Q)− 1 = n and ω(U \ Y ) = ω(U)− 1 = n− 1 andn− 1 ≥ 2 and
Ξ(U) ⊆ Ξ(Q)]. Observation.4.1.iv follows.

Observation 4.1.v. Let n [we recall n is a minumun counter-example to Theorem 4.1] and look
at the couple (U,Q) [ we recall that (U,Q) is a couple of remarkable uniform graphs and is fixed
once and for all ]. Now let Ξ(Q) be the canonical coloration ofQ [observe that Ξ(Q) exists, by re-
marking that Q ∈ Ω (since Q is uniform) and by using Assertion 2.4]. Then there exists Z ∈ Ξ(Q)
such that Z 6∈ Ξ(U) and U is isomorphic to Q \ Z (note that G \ Y is the induced subgraph of G
by V (G) \ Y and Ξ(U) is the canonical coloration of U (observe that Ξ(U) exists, by remarking
that U ∈ Ω (since U is uniform) and by using Assertion 2.4).

Indeed observing that U is a relative subgraph of Q such that ω(Q) = ω(U) + 1 ( because (U,Q)
is a couple of remarkable uniform graphs), then using the preceding and the meaning of a relative
subgraph [ use Definition 2.10], we immediately deduce that

there existsZ ∈ Ξ(Q) such thatZ 6∈ Ξ(U). (4.17)
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Clearly
ω(Q \ Z) = ω(Q)− 1 andω(Q \ Z) ≥ 3 andω(Q \ Z) = ω(U) (4.18)

[use (4.17) and property (2.11.4) of Assertion 2.11 coupled with Observation.4.1.iii and the second
equality of Observation.4.1.i] and clearly

Q \ Z is a relative of subgraph ofQ (4.19)

[recall that Z ∈ Ξ(Q) and use property (2.11.4) of Assertion 2.11 via the meaning of a relative
subgraph (use Definition 2.10) ]. Observe that

Q \ Z is uniform andω(Q \ Z) ≥ 3 andω(Q \ Z) = ω(U) (4.20)

[use (4.19) and the the meaning of a relative subgraph (use Definition 2.10) and the last two equal-
ities of (4.18)]. Since in particular (U,Q) is a couple of uniform graphs such that U is a relative
subgraph of Q with ω(Q) = ω(U) + 1, then using the previous and the couple ((4.19), (4.20)), it
becomes immediate to deduce that

α(Q \ Z) = α(Q) = α(U); (U,Q \ Z) is a couple of uniform graphs and

ω(Q \ Z) = ω(U) ≥ 2. (4.21)

So
U is isormorphic to Q \ Z (4.22)

[use (4.21) and property (i) of Remark 3.0]. Observation.4.1.v follows [use (4.17) and (4.22)].

Observation 4.1.vi. Let n [we recall n is a minumun counter-example to Theorem 4.1] and look
at the couple (U,Q) [we recall that (U,Q) is a couple of remarkable uniform graphs and is fixed
once and for all]. Now let Ξ(U) be the canonical coloration of U [observe that Ξ(U) exists, by
remarking that U ∈ Ω (since U is uniform) and by using Assertion 2.4]; look at Y ∈ Ξ(U) and let
the couple (U \ Y,Q \ Y ) ( note that G \ Y is the induced subgraph of G by V (G) \ Y ). Then
U \ Y is uniform; ω(U \ Y ) = ω(U) − 1 = n − 1; ω(Q \ Y ) = ω(Q) − 1 = n; b(U) ≤ n − 1;
b(U) = b(U \ Y ); and b(Q) ≤ n− 1 [notice that b(G) is the berge caliber of G].

Firstly, we prove that U \Y is uniform and ω(U \Y ) = ω(U)−1 = n−1 and ω(Q\Y ) = ω(Q)−
1 = n. Fact.0: U \Y is uniform and ω(U \Y ) = ω(U)−1 = n−1 and ω(Q\Y ) = ω(Q)−1 = n.
Indeed, using Observation.4.1.iv, then it becomes immediate to deduce that U \Y is a relative sub-
graph of Q \ Y such that ω(U \ Y ) = ω(U)− 1 = n− 1 ≥ 2 and ω(Q \ Y ) = ω(Q)− 1 = n; in
particular U \ Y is uniform [because U \ Y is a relative subgraph of Q \ Y ].

Secondly, we prove that b(U) ≤ n− 1. Fact.1: b(U) ≤ n− 1. (Otherwise b(U) > n− 1 and
the previous inequality clearly implies that

b(U). ≥ n (4.23)
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Remark that

b(U) ≤ n, (4.24)

since n = ω(U) [use Observation.4.1.i] and b(U) ≤ ω(U) [use the meaning of b(U) via Definition
2.16 and use property (2.18.0) of Assertion 2.18]. Now using inequalities (4.23) and (4.24), then
it becomes trivial to deduce that b(U) = n; so Theorem 4.1 is satisfied [use the previous equality
and property (4.2.2) of Remark 4.2]; a contradiction [since in particular (U,Q) is a couple of re-
markable uniform graphs]).

Thirdly, we prove that b(U) = b(U \ Y ). Fact.2: b(U) = b(U \ Y ). (indeed, observing [by
Fact.1] that b(U) ≤ n − 1 and noticing [by using Observation.4.1.iii] that n ≥ 3, then using the
previous two inequalities [notice that n = ω(U) via Observation 4.1.i], it becomes trivial to deduce
that all the hypotheses of Proposition 3.1 are satisfied, therefore, the conclusion of Proposition 3.1
is satisfied; consequently b(U) = b(U \ Y )).

Now, to prove Observation.4.1.vi, it suffices to show that b(Q) ≤ n−1. Fact.3: b(Q) ≤ n−1.
(indeed, observe that

b(Q) ≤ n (4.25)

otherwise b(Q) > n and the previous inequality clearly implies that

b(Q) ≥ n+ 1. (4.26)

Remark that

b(Q) ≤ n+ 1, (4.27)

since n + 1 = ω(Q) [use Observation.4.1.i] and b(Q) ≤ ω(Q) [use the meaning of b(Q) via
Definition 2.16 and use property (2.18.0) of Assertion 2.18]. Now using the previous equality and
inequalities (4.26) and (4.27), then it becomes trivial to deduce that

b(Q) = n+ 1 = ω(Q). (4.28)

Clearly
Q is bergerian (4.29)

[use (4.28) and property (2.18.1) of Assertion 2.18]. Now recalling that

U is relative subgraph ofQ (4.30)

[since (U,Q) is a couple of remarkable uniform graphs], then, using (4.29) and (4.30) and Remark
4.1′′, we immediately deduce that

U is bergerian. (4.31)

So b(U) = ω(U) [use (4.31) and property (2.18.1) of Assertion 2.18]; a contradiction, since
b(U) ≤ n−1 [by Fact.1] and ω(U) = n [by using Observation.4.1.i]. So b(Q) ≤ n]]. Now notice
that

b(Q) ≤ n− 1 (4.32)
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otherwise b(Q) > n − 1; now using the previous inequality coupled with inequality (4.25), then
we immediately deduce that

b(Q) = n. (4.33)

now letZ ∈ Ξ(Q) such thatZ 6∈ Ξ(U) (4.34)

[such a Z exists, via Observation.4.1.v]; clearly

U is isomorphic toQ \ Z (4.35)

[use (4.34) and Observation.4.1.v]. Observe that

b(Q) < ω(Q) (4.36)

[use (4.25) and observe (by using Observation.4.1.i) that n+ 1 = ω(Q)]. Now let (4.35) and look
at Q \ Z [recall that in particular Z ∈ Ξ(Q)]; then using (4.36) and the preceding [observe that
ω(Q) ≥ 4, by using Observation.4.1.iv], it becomes trivial to deduce that all the hypotheses of
Proposition 3.1 are satisfied, therefore, the conclusion of Proposition 3.1 is satisfied; consequently

b(Q) = b(Q \ Z). (4.37)

Clearly
b(Q) = b(U) (4.38)

[use (4.35) and (4.37)] and so
b(U) = n (4.39)

[use (4.38) and (4.33)]. Equality (4.39) clearly contradicts Fact.1. So b(Q) ≤ n− 1.]]). Observa-
tion 4.1.vi follows.

Observation 4.1.vii. Let n and look at the couple (U,Q) [we recall that (U,Q) is a couple of
remarkable uniform graphs and is fixed once and for all]. Now let Ξ(U) be the canonical coloration
of U , and let Y ∈ Ξ(U); look at U \Y [ U \Y is the induced subgraph of U by V (U)\Y ]. Now via
(φ(U), ν(U), ε(U) ) introduced in Definitions 3.3, consider (φ(U \ Y ), ν(U \ Y ), ε(U \ Y ) ) (this
consideration gets sense, since (U,Q) is couple of remarkable uniform graphs such that ω(U) = n
with n ≥ 3 [use Observation.4.1.iii] and therefore U \ Y is uniform such that ω(U \ Y ) = n− 1
[use property (2.11.4) of Assertion 2.11], with n− 1 ≥ 2). Then (φ(U \ Y )− φ(U), ν(U \ Y )−
ν(U), ε(U \ Y )− ε(U) ) tackles (1, 3iL−1U ) around 6LU − 19− iLU + 11iL2

U − 18i.
Indeed oberving that

b(U) ≤ n− 1 (4.40)

[use Observation.4.1.vi] and remaking that

n = ω(U) andn ≥ 3 (4.41)

[use Observation.4.1.i and Observation.4.1.iii ], then using (4.40) and (4.41) and the the fact that
(U,Q) is a couple of remarkable uniform graphs, it becomes trivial to deduce that (n, U ) satifies
all the hypotheses of Proposition 3.6; therefore (n, U ) satisfies the conclusion of Proposition 3.6.
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So LU ≤ 2n and (φ(U \ Y ) − φ(U), ν(U \ Y ) − ν(U), ε(U \ Y ) − ε(U) ) tackles (1, 3iL−1U )
around 6LU − 19− iLU + 11iL2

U − 18i. Observation.4.1.vii follows.

Observation 4.1.viii. Let n [ we recall n is a minumun counter-example to Theorem 4.1] and
look at the couple (U,Q) [ we recall that (U,Q) is a couple of remarkable uniform graphs and is
fixed once and for all ]. Let Ξ(U) be the canonical coloration of U and let Y ∈ Ξ(U); look at (U \
Y,Q\Y ) [U \Y is the induced subgraph of U by V (U)\Y ; Q\Y is the induced subgraph ofQ by
V (Q) \Y (observe that Q \Y gets sence, since Ξ(U) ⊆ Ξ(Q) by using Observation.4.1.iv)]. Now
look at (φ(U), ν(U), ε(U) ) introduced in Definitions 3.3, and via (φ(U), ν(U), ε(U) ), consider
(φ(U\Y ), ν(U\Y ), ε(U\Y ) ) (this consideration gets sense, since (U,Q) is a couple of remarkable
uniform graphs such that ω(U) = n with n ≥ 3 [use Observation.4.1.iii] and therefore U \ Y
is uniform such that ω(U \ Y ) = n − 1 [use Observation.4.1.vi], with n − 1 ≥ 2) . Then
(φ(U \ Y ), ν(U \ Y ), ε(U \ Y ) ) tackles (1, 3iL−1U ) around 6LU − 19− iLU + 11iL2

U − 18i.
Indeed, look at n [recall n is a minimum counter-example to Theorem 4.1 ], and via n, consider

n−1 (this consideration gets sense, since n ≥ 3 [use Observation.4.1.iii], and therefore n−1 ≥ 2).

Then by the minimality of n, n− 1 is not a counter-example to Theorem 4.1. (4.42)

Observing that

U\Y is a relative subgraph ofQ\Y andω(U\Y ) = n−1 andω(Q\Y ) = n andn−1 ≥ 2 (4.43)

[use Observation.4.1.iv]; then using (4.42) and (4.43), it becomes trivial to deduce that

the couple of uniform graphs (U \ Y, Q \ Y ) satisfies Theorem 4.1 (4.44)

[notice that U \ Y and Q \ Y are uniform graphs, since U \ Y is a relative subgraph of Q \ Y
(use (4.43) and the meaning of a relative subgraph given in Definition 2.10) ]. Now using (4.44), it
immediately follows that

at least one of properties (A1) and (A3) of Theorem 4.1 is satisfied byU \ Y (4.45)

or property(A2) of Theorem 4.1 is satisfied by (U \ Y, Q \ Y ). (4.45′)

That being said, we have the following three Claims.
Claim 1. Property (A1) of Theorem 4.1 is not satisfied by U \ Y . Otherwise

U \ Y is a complete graph (4.46)

[since Property (A1) of Theorem 4.1 is satisfied by U \ Y ]. Observing that

ω(U \ Y ) = n− 1 wheren− 1 ≥ 2 (4.46′)

[use (4.43)], then using (4.46) and (4.46′) and the fact that U is uniform, it becomes immediate to
deduce that

U is a complete graph. (4.47)
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(4.47) contradicts Observation.4.1.ii. Claim.1 follows.
Claim 2. Property (A2) of Theorem 4.1 is not satisfied by (U \ Y,Q \ Y ). Otherwise

ω(Q \ Y ) = b(Q \ Y ) = b(U \ Y ) + 1 (4.48)

[since Property (A2) of Theorem 4.1 is satisfied by (U \ Y,Q \ Y )]. Observing that

ω(Q \ Y ) = n (4.49)

[use Observation.4.1.vi ], then using (4.49), it becomes immediate to deduce that (4.48) clearly
says that

n = b(Q \ Y ) = b(U \ Y ) + 1. (4.50)

So
n = b(Q \ Y ) (4.51)

[use (4.50)]. Now observing [by using Observation.4.1.vi] that

b(Q) ≤ n− 1 (4.51′)

and noticing [ by using Observation.4.1.iv ] that

Q \ Y is a relative subgraph, Q (4.52)

clearly
b(Q \ Y ) ≤ b(Q) (4.52′)

[ use (4.52) and property (2.18.5) of Assertion 2.18]. So

b(Q \ Y ) ≤ n− 1 (4.52′′)

[ use (4.52′) and (4.51′) ], and inequality (4.52′′) contradicts equality (4.51). Claim.2 follows.
Claim 3. Property (A3) of Theorem 4.1 is satisfied by U \ Y . This Claim is immediate [use
Claim 1 and Claim 2 and (4.45) and (4.45′)].

Having made the previous three Claims, then we immediately deduce that

(φ(U \ Y ), ν(U \ Y ), ε(U \ Y ) ) tackles (1, 3iL−1U\Y ) around

6LU\Y − 19− iLU\Y + 11iL2
U\Y − 18i (4.53)

[use Claim 3]. Now let (4.53) and look at LU\Y ; clearly

LU\Y = 2b(U \ Y ) + 2 (4.54)

[ use the definition of LU\Y via the definition of LU given in Recalls and Definitions 3.2 and notice
that U \ Y is uniform (via Observation.4.1.vi )]. Now observing [ via Observation.4.1.vi] that

b(U) = b(U \ Y ), (4.55)
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clearly
LU\Y = 2b(U) + 2 = LU (4.56)

[use (4.55) and (4.54) and the definition of LU given in Recalls and Definitions 3.2]. So

(φ(U \ Y ), ν(U \ Y ), ε(U \ Y ) ) tackles (1, 3iL−1U ) around 6LU − 19− iLU + 11iL2
U − 18i

[use (4.56) and (4.53)]. Observation.4.1.viii follows.

Observation 4.1.ix. Let the couple (U,Q) [we recall that (U,Q) is a couple of remarkable uniform
graphs and is fixed once and for all ] and look at (φ(U), ν(U), ε(U) ) introduced in Definitions 3.3.
Then (φ(U), ν(U), ε(U) ) tackles (1, 3iL−1U ) around 6LU − 19− iLU + 11iL2

U − 18i.
Indeed using Observation.4.1.vii and the definition of tackle (use Recalls and Definitions 3.2),

then we immediately deduce that there exists (x, y, k ) ∈ C2 ×R such that

x+ 3iyL−1U + k(6LU − 19− iLU + 11iL2
U − 18i) + φ(U \ Y )− φ(U) = 0 (4.57)

where
x+ y − (ν(U \ Y )− ν(U)) = 0 and x− y − (ε(U \ Y )− ε(U)) = 0. (4.58)

That being so, using Observation.4.1.viii and the definition of tackle (use Recalls and Definitions
3.2), then we immediately deduce that there exists (x′, y′, k′) ∈ C2 ×R such that

x′ + 3iy′L−1U + k′(6LU − 19− iLU + 11iL2
U − 18i) + φ(U \ Y ) = 0 (4.59)

where
x′ + y′ − ν(U \ Y ) = 0 and x′ − y′ − ε(U \ Y ) = 0. (4.60)

Now using equality of (4 .59 ), then we immediately deduce that equality of (4.57) clearly says that

x− x′ + 3i(y − y′)L−1U + (k − k′)(6LU − 19− iLU + 11iL2
U − 18i)− φ(U) = 0. (4.61)

It is trivial to see that equality (4.61) clearly says that

x′ − x+ 3i(y′ − y)L−1U + (k′ − k)(6LU − 19− iLU + 11iL2
U − 18i) + φ(U) = 0. (4.62)

Using the two equalities of (4.60), then we immediately deduce that the two equalities of (4.58)
clearly say that

(x− x′) + (y − y′) + ν(U) = 0 and (x− x′)− (y − y′) + ε(U) = 0. (4.63)

It is trivial to see that (4.63) clearly says that

(x′ − x) + (y′ − y)− ν(U) = 0 and (x′ − x)− (y′ − y)− ε(U) = 0. (4.64)

Now observing that (x, y, k ) ∈ C2 ×R (use (4.57)) and since (x′, y′, k′ ) ∈ C2 ×R (use (4.59)),
then it becomes trivial to deduce that (4.62) and (4.64) clearly say that

there exists (x′′, y′′, k′′) ∈ C2 ×R such thatx′′ = x′ − x and y′′ = y′ − y and k′′ = k′ − k (4.65)
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where
x′′ + y′′ − ν(U) = 0, x′′ − y′′ − ε(U) = 0 and

x′′ + 3iy′′L−1U + k′′(6LU − 19− iLU + 11iL2
U − 18i) + φ(U) = 0. (4.66)

Clearly

(φ(U), ν(U), ε(U) ) tackles (1, 3iL−1U ) around 6LU − 19− iLU + 11iL2
U − 18i

(use (4.65) and (4.66) and the definition of tackle introduced in Recalls and Definitions 3.2).
Observation.4.1.ix follows.

These simple observations made, then it becomes trivial to see that Observation.4.1.ix clearly
contradicts Observation.4.1.i. Theorem 4.1 follows.2

Now the following theorem is a consequence of Theorem 4.1.

Theorem 4.5 Let n be an integer ≥ 1 and let U be uniform such that ω(U) = n; look at b(U)
(b(U) is the berge caliber of U ). Then b(U) = n.
Proof. Otherwise, let n be a minimum counter-example [such a n clearly exists] and let U be
uniform such that

b(U) 6= n and n = ω(U), (4.67)

fix once and for all U [U is fixed once and for all, so U does not move anymore]. Now let Ξ(U)
be the canonical coloration of U [observe that Ξ(U) exists, by remarking that U ∈ Ω (since U is
uniform) and by using Assertion 2.4], and let Y ∈ Ξ(U); look at the couple (b(U), b(U \ Y )),
where b(U) is the berge caliber of U and b(U \ Y ) is the berge caliber of U \ Y (note that U \ Y is
the induced subgraph of U by V (U) \ Y ). We observe the following.

Observation 4.5.1. n > 2 and U \ Y is uniform and ω(U \ Y ) = ω(U) − 1 = n − 1 and
b(U) ≤ n− 1 and b(U) = b(U \ Y ) and b(U) = n− 1.
Firstly, we prove that n > 2. Claim.0: n > 2. Otherwise clearly

1 ≤ n ≤ 2, where n = ω(U) and χ(U) = n since U ∈ Ω. (4.68)

Noticing that U ∈ Ω [ since U is uniform], then, using (4.68) and property (3) of Assertion 1.9, it
becomes trivial to deduce that

n = β(U), where n = ω(U). (4.69)

Using (4.69) and property (2.18.1) of Assertion 2.18, then we immediately deduce that

n = β(U) = b(U). (4.70)

Clearly b(U) = n [use (4.70)], and the previous equality contradicts (4.67).
Secondly, we prove that U \ Y is uniform and ω(U \ Y ) = ω(U)− 1 = n− 1. Claim 1: U \ Y
is uniform and ω(U \ Y ) = ω(U) − 1 = n − 1. Indeed, observing [by Claim 0] that n > 2 and
noticing [by using (4.67)] that n = ω(U), then, using the previous and property (iii) of Remark
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3.0, it becomes trivial to deduce that U \ Y is uniform such that ω(U \ Y ) = ω(U)− 1 = n− 1.
Now, to prove Observation 4.5.1, it suffices to show that b(U) ≤ n− 1 and b(U) = b(U \ Y ) and
b(U) = n− 1. Claim 2: b(U) ≤ n− 1 and b(U) = b(U \ Y ) and b(U) = n− 1. Clearly

b(U) ≤ n− 1 (4.71)

(Otherwise b(U) > n− 1 and the previous inequality clearly implies that

b(U) ≥ n. (4.71′)

Remark that

b(U) ≤ n, (4.72)

since n = ω(U) [use (4.67)] and b(U) ≤ ω(U) [use the definition of b(U) ]. Now using inequal-
ities (4.71′) and (4.72), then it becomes trivial to deduce that b(U) = n; the previous equality
contradicts (4.67). So b(U) ≤ n− 1); and clearly

b(U) = b(U \ Y ) (4.73)

(indeed, observing [by (4.71)] that b(U) ≤ n − 1 and noticing [by Claim 0] that n > 2, then
using the previous two inequalities [recall that n = ω(U)], it becomes trivial to deduce that all the
hypotheses of Proposition 3.1 are satisfied, therefore, the conclusion of Proposition 3.1 is satis-
fied; consequently b(U) = b(U \ Y )); and clearly b(U) = n − 1 (indeed, look at n [recall n is a
minimum counter-example], and via n, consider n− 1 [this consideration gets sense, since n > 2
(by Claim 0), and therefore n − 1 > 1]. Observing [by Claim 1] that U \ Y is uniform such that
ω(U \ Y ) = n − 1 and n > 2, then, by the minimality of n, n − 1 is not a counter-example to
Theorem 4.5; so

b(U \ Y ) = n− 1, (4.74)

since [by Claim 1] U \ Y is uniform such that ω(U \ Y ) = n − 1. Clearly b(U) = n − 1 [use
equalities (4.73) and (4.74)]). Observation.4.5.1 follows.
Observation 4.5.2. Let the couple (n, U) [we recall that n is a minimum counter-example and
U is uniform such ω(U) 6= b(U) and ω(U) = n (use (4.67)) and U is fixed once and for all].
Now consider (φ(U), ν(U), ε(U) ) introduced in Definitions 3.3 and look at LU [use Recalls and
Definitions 3.2]. Then (φ(U), ν(U), ε(U) ) does not tackle (1, 3iL−1U ) around 6LU − 19− iLU +
11iL2

U − 18i.
Indeed look at U ; observing [by using Observation.4.5.1] that b(U) = n− 1, clearly

LU = 2n. (4.75)

Now observing that U is uniform and n > 2 [use Observation.4.5.1], then using the preceding and
(4.75), it becomes trivial to see that (n, U ) satisfies all the hypotheses of Remark 3.5, therefore
(n, U ) satisfies the conclusion of Remark 3.5; consequently (φ(U), ν(U), ε(U) ) does not tackle
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(1, 3iL−1U ) around 6LU − 19− iLU + 11iL2
U − 18i. Observation.4.5.2 follows.

Observation 4.5.3. Let the couple (n, U) [ we recall that n is a minimum counter-example and U
is uniform such ω(U) 6= b(U) and ω(U) = n (use (4.67)) and U is fixed once and for all]. Then U
is not a complete graph.

Otherwise
b(U) = n (4.76)

[use Remark 2.1 and recall that n = ω(U) (by (4.67))] and equality (4.76) contradicts (4.67).
Observation.4.5.3 follows.

These simple observations made, let Q be uniform such that ω(Q) = n+ 1 and U is a relative
subgraph of Q [observe that such a Q clearly exists, since n > 2 (use Observation.4.5.1)] and look
at the couple (U,Q); recalling that in particular U is uniform such ω(U) = n [ note that n > 2 (use
Observation.4.5.1)], then, using Theorem 4.1, it becomes trivial to deduce that

U is a complete graph or b(Q) = ω(Q) = b(U) + 1 (4.77)

or

(φ(U), ν(U), ε(U) ) tackles (1, 3iL−1U ) around 6LU − 19− iLU + 11iL2
U − 18i. (4.78)

Recalling that
b(U) 6= n andω(U) = n andω(Q) = n+ 1 (4.79)

[use (4.67) and the definition of Q], and using Observation.4.5.3 coupled with (4.79), then it be-
comes trivial to deduce that

property (4.77) is not satisfied; (4.80)

so
property (4.78) is satisfied (4.81)

[use (4.80) and (4.77) and (4.78)]. Clearly

(φ(U), ν(U), ε(U) ) tackles (1, 3iL−1U ) around 6LU − 19− iLU + 11iL2
U − 18i

[use (4.81) and (4.78)] and the previous clearly contradicts Observation.4.5.2. Theorem 4.5 follows.2
Theorem 4.5 immediately implies the Berge problem and the Berge conjecture.

Theorem 4.6. (The proof of the Berge problem). The Berge problem is true [i.e. For every
berge graph B, we have χ(B) = ω(B)].
Proof. Observing [by Theorem 4.5] that for every integer n ≥ 1 and for every uniform graph U
such that ω(U) = n, we have b(U) = n, then using the previous and Proposition 2.19, it becomes
immediate to deduce that the Berge problem is true.2

Theorem 4.7 (The Proof of the Berge Conjecture). Let F be a graph. Then, F is perfect ⇔ F
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is berge.
Proof. (⇒) is very easy and was rapidly proved by Berge (see [2]).
(⇐) Otherwise [we reason by reduction to absurd]. Let F be a counter-example such that -
card(V (F )) is minimum. Then, we have the following three simple claims.
Claim 4.7.0. card(V (F )) > 0.

Otherwise, clearly V (F ) = {∅}, and clearly F is perfect. A contradiction.
Claim 4.7.1. Let x ∈ V (F ) [such a x exists, by using Claim 4.7.0], and let F ′ = F \ {x} [recall
F ′ is the induced subgraph of F by V (F ) \ {x}]. Then F ′ is perfect.

Indeed, recalling that F is berge, clearly F ′ is also berge [ since F ′ is an induced subgraph of
F ]. Since card(V (F ′)) = card(V (F )) − 1, clearly F ′ is berge and is such that card(V (F ′)) =
card(V (F )) − 1; then, by the minimality of card(V (F )), F ′ is not a counter-example. So, F ′ is
perfect. Claim.4.7.1 follows.
Claim.4.7.2. χ(F ) > ω(F ).

Otherwise, clearly

χ(F ) = ω(F ). (4.82)

Now let x ∈ V (F ) [such a x exists, by using Claim 4.7.0], and let F ′ = F \ {x}; observing that
F ′ is perfect [use Claim 4.7.1], then, using equality (4.82), we immediately deduce that F is also
perfect. A contradiction [since F is a counter-example]. Claim 4.7.2 follows.

These three simple claims made, consider F ; recalling that F is berge, then Theorem 4.6 im-
mediately implies that χ(F ) = ω(F ), and this contradicts claim 4.7.2. Theorem 4.7 follows. 2

3’. Epilogue
Our article clearly shows that elementary complex calculus coupled with elementary arithmetic
calculus and trivial computation help to give a simple analytic proof of the Berge problem and the
Berge conjecture. Now we end this article by proving the only Proposition that we let unproved in
Section 3.

Proposition 3.6. Let (n, U) where n is an integer ≥ 2 and U is a uniform graph such that
ω(U) = n; consider LU (use Recalls and Definitions 3.2) and look at (φ(U), ν(U), ε(U) ) in-
troduced in Definitions 3.3. Now let Ξ(U) be the canonical coloration of U (use Definition 2.3),
and let Y ∈ Ξ(U); look at (U \ Y, b(U \ Y ),LU\Y ) [where U \ Y is the induced subgraph of
U by V (U) \ Y ; b(U \ Y ) is the berge caliber of U \ Y and LU\Y = 2b(U \ Y ) + 2]. Via
(φ(U), ν(U), ε(U) ) introduced in Definitions 3.3, consider (φ(U \ Y ), ν(U \ Y ), ε(U \ Y ) ) (this
consideration gets sense, since U is uniform such that ω(U) = n with n ≥ 2 and therefore U \ Y
is uniform such that ω(U \ Y ) = n− 1 [use property (2.11.4) of Assertion 2.11], with n− 1 ≥ 1).
If the berge caliber b(U) is of the form b(U) ≤ n−1, then LU ≤ 2n and (φ(U \Y )−φ(U), ν(U \
Y )− ν(U), ε(U \ Y )− ε(U) ) tackles (1, 3iL−1U ) around 6LU − 19− iLU + 11iL2

U − 18i.
To prove Proposition 3.6, we need four elementary remarks.
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Remark 3.7. Let n be an integer ≥ 2 and let U be uniform such that ω(U) = n; look at LU (use
Recalls and Definitions 3.2). Now let Ξ(U) be the canonical coloration of U (use Definition 2.3),
and let Y ∈ Ξ(U); consider (U \Y,LU\Y ) [where U \Y is the induced subgraph of U by V (U)\Y
and LU\Y = 2b(U \ Y ) + 2]. If LU ≤ 2n, then LU = LU\Y .

Proof. Indeed observing (via the hypotheses) that

LU ≤ 2n wheren = ω(U) andn ≥ 2 (U is uniform), (3.34)

and recalling [via Recalls and Definitions 3.2] that

LU = 2b(U) + 2, (3.35)

then using (3.34) and (3.35), it becomes trivial to deduce that

ω(U) > b(U). (3.36)

Now via (3.34) and inequality (3.36), then it becomes trivial to deduce that U satisfies all the
hypotheses of Proposition 3.1; therefore U satisfies the conclusion of Proposition 3.1 and so

b(U) = b(U \ Y ). (3.37)

Clearly LU = LU\Y (use equalities (3.37) and (3.35) by recalling that LU\Y = 2b(U \ Y ) + 2).
Remark 3.7 follows.2

Remark 3.8.Let n be an integer ≥ 2 and let U be uniform such that ω(U) = n; consider LU (use
Recalls and Definitions 3.2). Now let Ξ(U) be the canonical coloration of U (use Definition 2.3),
and let Y ∈ Ξ(U); consider (U \Y,LU\Y ) [where U \Y is the induced subgraph of U by V (U)\Y
andLU\Y = 2b(U\Y )+2]. Look at (φ(U.1), φ(U.2), φ(U.3), φ(U.4)) introduced in Definitions 3.3,
and via (φ(U.1), φ(U.2), φ(U.3), φ(U.4)), consider (φ(U \Y.1), φ(U \Y.2), φ(U \Y.3), φ(U \Y.4))
(this consideration gets sense, since U is uniform such that ω(U) = n with n ≥ 2 and therefore
U \ Y is uniform such that ω(U \ Y ) = n − 1 [use property (2.11.4) of Assertion 2.11], with
n− 1 ≥ 1). If LU ≤ 2n, then we have the following four properties.
(3.8.1) φ(U \ Y.1)− φ(U.1) = 0.
(3.8.2)φ(U \ Y.2)− φ(U.2) = −8n(16L−3U + 50L−2U + 11iL−3U − 13i+ 5iLU) + 8LU − 8i− 16.
(3.8.3)φ(U \ Y.3)− φ(U.3) = −8n(34iL−2U − 70iL−3U − 11i+ 5 + 6iLU).
(3.8.4)φ(U \ Y.4)− φ(U.4) = −8n(11iLU + 7− 50L−1U + 23iL−3U − 54L−3U ).

Proof. (3.8.1) Indeed let φ(U \ Y.1); clearly

φ(U\Y.1) =
126301iL−3U\Y + 2273418iL−4U\Y − 23837LU\Y − 357566L−1U\Y

1331
+φ(U\Y.1)′ (3.38)
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where

φ(U \ Y.1)′ =
2010800L−2U\Y + 2399719L−4U\Y − 757806L−3U\Y

1331
(3.38′)

(use (3.5) of Definitions 3.3). So

φ(U \ Y.1) = 1
1331

(126301iL−3U + 2273418iL−4U − 23837LU − 357566L−1U

+2010800L−2U + 2399719L−4U − 757806L−3U ) (3.39)

(use (3.38) and (3.38′) and notice [by observing that LU ≤ 2n and by using Remark 3.7] that
LU = LU\Y ). Clearly

φ(U \ Y.1) = φ(U.1) (3.40)

(use (3.5) of Definitions 3.3 and (3.39)) and so φ(U \ Y.1)− φ(U.1) = 0 (use (3.40)). Property
(3.8.1) immediately follows.
(3.8.2) Indeed let φ(U \ Y.2); clearly

φ(U\Y.2) = ((2(n−1)+1)2−1−L2
U\Y−2LU\Y )(16L−3U\Y +50L−2U\Y +11iL−3U\Y−13i+5iLU\Y )+γn

(3.41)
where

γn =
(LU\Y − 2(n− 1))

2
(8LU\Y − 8i− 16) (3.41′)

(use (3.6) of Definitions 3.3 and observe that ω(U \ Y ) = ω(U)− 1 = n− 1). So

φ(U \ Y.2) = ((2(n− 1) + 1)2 − 1− L2
U − 2LU)(16L−3U + 50L−2U + 11iL−3U − 13i+ 5iLU)

+
(LU − 2(n− 1))

2
(8LU − 8i− 16) (3.42)

(use (3.41) and (3.41′) and notice [by observing that LU ≤ 2n and by using Remark 3.7] that
LU = LU\Y ). Clearly

φ(U \ Y.2) = ((2n+ 1)2 − 1− L2
U − 2LU)(16L−3U + 50L−2U + 11iL−3U − 13i+ 5iLU)

+
(LU − 2n)

2
(8LU − 8i− 16) + φ(U \ Y.2)′ (3.43)

where

φ(U \ Y.2)′ = −8n(16L−3U + 50L−2U + 11iL−3U − 13i+ 5iLU) + 8LU − 8i− 16 (3.43′)

(use the first member of (3.42) and observe [by elementary computation and by using the first
member of (3.42)] that

((2(n− 1) + 1)2 − 1− L2
U − 2LU) = ((2n+ 1)2 − 1− L2

U − 2LU)− 8n,

and remark [by elementary computation and by using the second member of (3.42) ] that

(LU − 2(n− 1))

2
=

(LU − 2n)

2
+ 1)
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. So

φ(U \ Y.2) = φ(U.2)− 8n(16L−3U + 50L−2U + 11iL−3U − 13i+ 5iLU) + 8LU − 8i− 16 (3.44)

(use (3.6) of Definitions 3.3 and (3.43) and (3.43′)). Clearly

φ(U \ Y.2)− φ(U.2) = −8n(16L−3U + 50L−2U + 11iL−3U − 13i+ 5iLU) + 8LU − 8i− 16

(use (3.44)). Property (3.8.2) immediately follows.
(3.8.3) Indeed let φ(U \ Y.3); clearly

φ(U\Y.3) = ((2(n−1)+1)2−1−L2
U\Y +2LU\Y )(34iL−2U\Y−70iL−3U\Y−11i+5+6iLU\Y )+

289080

1331
(3.45)

(use (3.7) of Definitions 3.3 and observe that ω(U \ Y ) = ω(U)− 1 = n− 1). So

φ(U\Y.3) = ((2(n−1)+1)2−1−L2
U+2LU)(34iL−2U −70iL−3U −11i+5+6iLU)+

289080

1331
(3.46)

(use (3.45) and notice [by observing that LU ≤ 2n and by using Remark 3.7] that LU = LU\Y ).
Clearly

φ(U\Y.3) = ((2n+1)2−1−L2
U+2LU)(34iL−2U −70iL−3U −11i+5+6iLU)+

289080

1331
+φ(U\Y.3)′

(3.47)
where

φ(U \ Y.3)′ = −8n(34iL−2U − 70iL−3U − 11i+ 5 + 6iLU) (3.48)

(use (3.46) and observe [by elementary computation] that ((2(n − 1) + 1)2 − 1 − L2
U + 2LU) =

((2n+ 1)2 − 1− L2
U + 2LU)− 8n ). So

φ(U \ Y.3) = φ(U.3)− 8n(34iL−2U − 70iL−3U − 11i+ 5 + 6iLU) (3.49)

(use (3.47) and (3.48) and (3.7) of Definitions 3.3) and clearly

φ(U \ Y.3)− φ(U.3) = −8n(34iL−2U − 70iL−3U − 11i+ 5 + 6iLU)

(use (3.49)). Property (3.8.3) immediately follows.
(3.8.4) Indeed let φ(U \ Y.4); clearly

φ(U \ Y.4) = ((2(n− 1) + 1)2 − 1− L2
U\Y + 7LU\Y )

(11iLU\Y + 7− 50L−1U\Y + 23iL−3U\Y − 54L−3U\Y )

−1003112i

1331
(3.50)

(use (3.8) of Definitions 3.3 and observe that ω(U \ Y ) = ω(U)− 1 = n− 1). So

φ(U \ Y.4) = ((2(n− 1) + 1)2 − 1− L2
U + 7LU)(11iLU + 7− 50L−1U + 23iL−3U − 54L−3U )

−1003112i

1331
(3.51)
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(use (3.50) and notice [by observing that LU ≤ 2n and by using Remark 3.7] that LU = LU\Y ).
Clearly

φ(U \ Y.4) = ((2n+ 1)2 − 1− L2
U + 7LU)(11iLU + 7− 50L−1U + 23iL−3U − 54L−3U )

−1003112i

1331
+ φ(U \ Y.4)′ (3.52)

where
φ(U \ Y.4)′ = −8n(11iLU + 7− 50L−1U + 23iL−3U − 54L−3U ) (3.53)

(use (3.52) and observe [by elementary computation and by using (3.52)] that

((2(n− 1) + 1)2 − 1− L2
U + 7LU) = ((2n+ 1)2 − 1− L2

U + 7LU)− 8n).

So
φ(U \ Y.4) = φ(U.4)− 8n(11iLU + 7− 50L−1U + 23iL−3U − 54L−3U ) (3.54)

(use (3.52) and (3.53) and (3.8) of Definitions 3.3) and clearly

φ(U \ Y.4)− φ(U.4) = −8n(11iLU + 7− 50L−1U + 23iL−3U − 54L−3U )

(use (3.54)). Property (3.8.4) follows and Remark 3.8 immediately follows.2

Remark 3.9. Let n be an integer ≥ 2 and let U be uniform such that ω(U) = n; consider LU
(use Recalls and Definitions 3.2). Now let Ξ(U) be the canonical coloration of U (use Definition
2.3), and let Y ∈ Ξ(U); consider (U \ Y,LU\Y ) [where U \ Y is the induced subgraph of U by
V (U)\Y and LU\Y = 2b(U \Y )+2]. Look at ( ν(U), ε(U)) introduced in Definitions 3.3, and via
( ν(U), ε(U) ), consider ( ν(U \ Y ), ε(U \ Y ) ) (this consideration gets sense, since U is uniform
such that ω(U) = n with n ≥ 2 and therefore U \ Y is uniform such that ω(U \ Y ) = n− 1 [use
property (2.11.4) of Assertion 2.11], with n− 1 ≥ 1). If LU ≤ 2n, then we have the following two
properties.
(3.9.1.) ν(U \ Y )− ν(U) = 32n− 8LU + 8i+ 16.
(3.9.2.) ε(U \ Y )− ε(U) = −32n− 8LU + 8i+ 16.

Proof. Indeed let (ν(U \ Y ), ε(U \ Y )); clearly

ν(U \ Y ) = ( iLU\Y − 4i(n− 1)− 4i+ 1 )2 − 1 + L2
U\Y (3.55)

(use (3 .9 ) of Definitions 3.3 and observe that ω(U \ Y ) = ω(U)− 1 = n− 1) and

ε(U \Y ) = 4( (2(n−1)+1)2−1−L2
U\Y +LU\Y )+( iLU\Y −2i(n−1)+1 )( 4iLU\Y +4−8i )

(3.56)

(use (3.10) of Definitions 3.3 and observe that ω(U \ Y ) = ω(U)− 1 = n− 1). So

ν(U \ Y ) = ( iLU − 4i(n− 1)− 4i+ 1 )2 − 1 + L2
U (3.57)
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(use (3.55) and notice [by observing that LU ≤ 2n and by using Remark 3.7] that LU = LU\Y )
and

ε(U \Y ) = 4( (2(n−1)+1)2−1−L2
U +LU )+( iLU −2i(n−1)+1 )( 4iLU +4−8i ) (3.58)

(use (3.56) and notice [by observing that LU ≤ 2n and by using Remark 3.7] that LU = LU\Y ).
That being said, we now prove easily property (3.9.1) and property (3.9.2).
(3.9.1.) Indeed observing (by elementary computation and the fact that i2 = −1) that

( iLU−4i(n−1)−4i+1 )2−1+L2
U = ( iLU−4in−4i+1 )2−1+L2

U+32n−8LU+8i+16 (3.59)

then clearly

ν(U \ Y ) = ( iLU − 4in− 4i+ 1 )2 − 1 + L2
U + 32n− 8LU + 8i+ 16 (3.60)

(use (3.57) and (3.59)). So

ν(U \ Y ) = ν(U) + 32n− 8LU + 8i+ 16 (3.61)

(use (3.60) and (3.9) of Definitions 3.3) and clearly

ν(U \ Y )− ν(U) = 32n− 8LU + 8i+ 16

(use (3.61)). Property (3.9.1.) follows.
(3.9.2.) Indeed observing (by elementary computation and the fact that i2 = −1) that

4( (2(n− 1) + 1)2 − 1− L2
U + LU ) = 4( (2n+ 1)2 − 1− L2

U + LU )− 32n (3.62)

and

( iLU−2i(n−1)+1 )( 4iLU+4−8i ) = (iLU−2in+1)(4iLU+4−8i)+2i(4iLU+4−8i) (3.63),

then clearly

ε(U\Y ) = 4( (2n+1)2−1−L2
U+LU )+( iLU−2in+1 )( 4iLU+4−8i )−32n+2i( 4iLU+4−8i )

(3.64)

(use (3.58) and (3.62) and (3.63)). So

ε(U \ Y ) = ε(U)− 32n+ 2i( 4iLU + 4− 8i ) (3.65)

(use (3.64) and (3.10) of Definitions 3.3). Clearly

ε(U \ Y )− ε(U) = −32n− 8LU + 8i+ 16

(use (3.65) and observe [by elementary computation and the fact that i2 = −1] that

−32n+ 2i( 4iLU + 4− 8i ) = −32n− 8LU + 8i+ 16).
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Property (3.9.2) follows and Remark 3.9 immediately follows. 2

Remark 3.10. Let n be an integer ≥ 2 and let U be uniform such that ω(U) = n. Now let
Ξ(U) be the canonical coloration of U (use Definition 2.3), and let Y ∈ Ξ(U); consider U \ Y
[where U \ Y is the induced subgraph of U by V (U) \ Y ]. Look at φ(U) introduced in Definitions
3.3, and via φ(U), consider φ(U \ Y ) (this consideration gets sense, since U is uniform such that
ω(U) = n with n ≥ 2 and therefore U \ Y is uniform such that ω(U \ Y ) = n − 1 [use property
(2.11.4) of Assertion 2.11], with n− 1 ≥ 1). Then

φ(U \ Y )− φ(U) =
4∑
j=1

(φ(U \ Y.j)− φ(U.j)).

Proof. Indeed let φ(U); clearly

φ(U \ Y ) =
4∑
j=1

φ(U \ Y.j) (3.66)

(use (3.4) of Definitions 3.3). So

φ(U \ Y )− φ(U) =
4∑
j=1

φ(U \ Y.j)− (
4∑
j=1

φ(U.j)) (3.67)

(use (3.66) and (3.4) of Definitions 3.3) and clearly

φ(U \ Y )− φ(U) =
4∑
j=1

(φ(U \ Y.j)− φ(U.j))

(use (3.67)). Remark 3.10 follows.2
Now using the previous four Remarks, then Proposition 3.6 becomes elementary to prove.

Proof of Proposition 3.6. Indeed look (φ(U \ Y )− φ(U), ν(U \ Y )− ν(U), ε(U \ Y ) − ε(U) ).
Clearly

φ(U \ Y )− φ(U) =
4∑
j=1

(φ(U \ Y.j)− φ(U.j)) (3.68)

(use Remark 3.10), where
φ(U \ Y.1)− φ(U.1) = 0 (3.69)

(use property (3.8.1) of Remark 3.8), and

φ(U \ Y.2)− φ(U.2) = −8n(16L−3U + 50L−2U + 11iL−3U − 13i+ 5iLU) + 8LU − 8i− 16 (3.70)
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(use property (3.8.2) of Remark 3.8), and

φ(U \ Y.3)− φ(U.3) = −8n(34iL−2U − 70iL−3U − 11i+ 5 + 6iLU) (3.71)

(use property (3.8.3) of Remark 3.8), and

φ(U \ Y.4)− φ(U.4) = −8n(11iLU + 7− 50L−1U + 23iL−3U − 54L−3U ) (3.72)

(use property (3.8.4) of Remark 3.8), and

ν(U \ Y )− ν(U) = 32n− 8LU + 8i+ 16 (3.73)

(use property (3.9.1) of Remark 3.9), and

ε(U \ Y )− ε(U) = −32n− 8LU + 8i+ 16 (3.74)

(use property (3.9.2) of Remark 3.9). That being so, let (x, y, k) such that

x = −8LU + 8i+ 16; y = 32n; and k = 16nL−3U − 16nL−2U + 16nL−1U (3.75).

Now let (φ(U \Y )−φ(U), ν(U \Y )−ν(U), ε(U \Y )− ε(U), x, y, k ) where (x, y, k) is explicted
in (3.75) and where

(φ(U \ Y )− φ(U), ν(U \ Y )− ν(U), ε(U \ Y )− ε(U))

is explicited above (use (3.68) for φ(U \ Y )− φ(U); and (3.73) for ν(U \ Y )− ν(U); and (3.74)

for ε(U \ Y )− ε(U)). Now consider (ν(U \ Y )− ν(U), ε(U \ Y )− ε(U), x, y ); then using (3.73)
and (3.74) and the first two equalities of (3.75), we easily check (by elementary computation and
the fact that i2 = −1) that

x+ y − (ν(U \ Y )− ν(U)) = 0 and x− y − (ε(U \ Y )− ε(U)) = 0 (3.76).

That being so, look again at (φ(U \ Y )− φ(U), ν(U \ Y )− ν(U), ε(U \ Y )− ε(U), x, y, k ) and
consider (φ(U \Y )−φ(U), x, y, k ); using the three equalities of (3.75), then it becomes very easy
to check (by elementary computation and the fact that i2 = −1) that

x+ 3iyL−1U + k(6LU − 19− iLU + 11iL2
U − 18i) + φ(U \ Y )− φ(U) = 0; k ∈ R

and

φ(U \ Y )− φ(U) =
4∑
j=1

(φ(U \ Y.j)− φ(U.j)) (3.77)

(use (3.75) for (x, y, k); (3.69) for φ(U \Y.1)−φ(U.1); (3.70) for φ(U \Y.2)−φ(U.2); (3.71) for
φ(U \ Y.3)− φ(U.3); (3.72) for φ(U \ Y.4)− φ(U.4); and (3.68) for φ(U \ Y )− φ(U)). Clearly
(φ(U \Y )−φ(U), ν(U \Y )−ν(U), ε(U \Y )−ε(U) ) tackles (1, 3iL−1U ) around 6LU−19−iLU +

11iL2
U − 18i (use (3.76) and (3.77) and the notion of tackle introduced in Definitions and Recalls

3.2 [observe that (x, y) ∈ C2 and k ∈ R; so (x, y, k) ∈ C2 × R]). Proposition 3.6 immediately
follows. 2
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