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Abstract

Let Pn represent the path of size n. Let K1,m−1 represent a star of size m and be denoted by Sm.
Given a two coloring of the edges of a complete graph Kj×s we say that Kj×s → (Pn, Sm+1) if
there is a copy of Pn in the first color or a copy of Sm+1 in the second color. The size Ramsey
multipartite number mj(Pn, Sm+1) is the smallest natural number s such that Kj×s → (Pn, Sm+1).

Given j, n,m if s =

⌈
n+m− 1− k

j − 1

⌉
, in this paper, we show that the size Ramsey numbers

mj(Pn, Sm+1) is bounded above by s for k =

⌈
n− 1

j

⌉
. Given j ≥ 3 and s, we will obtain

an infinite class (n,m) that achieves this upper bound s. In the later part of the paper, will also
investigate necessary and sufficient conditions needed for the upper bound to hold.
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Introduction

All graphs considered in this paper finite graphs without loops and multiple edges. Let Kn,m

represent the complete bipartite graph of nm vertices, partitioned in to two sets of size n andm. Let
Kj×s represent the complete balance multipartie graph having j uniform multipartite sets of size
s. If for every two coloring (red and blue) of the edges of a complete graph Kn, there exists a copy
of G in the first color (red) or a copy of H in the second color (blue), we say Kn → (G,H). The
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Ramsey number r(G,H) is defined as the smallest positive integer n such that Kn → (G,H). The
classical Ramsey number r(n,m) is defined as r(Kn, Km). However, even in the case of diagonal
classical Ramsey numbers corresponding to r(n, n) the exact determination (see Radziszowski,
2004 for a survey) of the has abruptly halted at r(5, 5) (at present known to be between 43 and
49). One of the first variations of the classical Ramsey numbers namely size Ramsey numbers was
introduced by Erdös, Faudree, Rousseau and Shelph (i.e., Erdös et al., 1978; Rousseau et al. 1978).
In the last decade, using this idea of the original classical Ramsey numbers and of the size Ramsey
numbers, the notion of size multipartite Ramsey numbers were introduced by Burger et al. and
Syafrizal et al. (i.e., Burger et al., 2004; Syfrizal et al., 2005) by exploring the two colorings of
multipartite graphs Kj×s instead of the complete graph. More formally, they defined size Ramsey
multipartite number mj(G,H) to be the smallest natural number s such that Kj×s → (G,H). A
few classes of such size Ramsey multipartite number have been studied by Syafrizal Sy, et al. (i.e.,
Syfrizal et al., 2005; Syfrizal et al., 2007; Syfrizal et al., 2009; Syfrizal et al., 2012; Syfrizal, 2010
and Syfrizal, 2011). However, it is unfortunate that unlike in the cases of Ramsey numbers or size
bipartite Ramsey numbers, the search has been restricted to a few Ramsey multipartite numbers
between classes of graphs. In most cases, even in the case when such Ramsey numbers are found
it has been limited to restricted classes of graphs. Motivated by this fact, in this paper we try to
extend the list of size Ramsey multipartite numbers for pairs of classes of graphs, by finding the
exact values of ”Size multipartite Ramsey numbers for paths versus stars”.

1. Notation

The order of the graph G = (V,E) is denoted by |V (G)| and the number of edges in the graph is
denoted by |E(G)|. The neighborhood of a vertex v ∈ V is defined as the set of vertices adjacent to
v and is denoted by N(v). The degree of v, d(v), is defined as the cardinality of N(v). Also, δ(G)
is defined as the minimum degree of graph G. A k regular graph on n vertices is a graph G on n
vertices which satisfies d(v) = k for all v ∈ V (G). Given a red/blue coloring ofKj×s = HR⊕HB,
define the red degree and blue degree of any vertex v ∈ V (Kj×s) denoted by dR(v) and dB(v) as
the degree of vertex v in HR and HB respectively. Define δR and δB as the minimum degree of
HR and HB respectively. If C is a set of vertices of Kj×s and x ∈ C then the set of vertices of C

belonging to the partite set x belongs to is denoted by Cx. Define k as
⌈
n−1
j

⌉
and kn−2 as

⌈
n−2
j

⌉
.

Unless stated otherwise let n ≥ 3 and m ≥ 2.

2. Some Lemmas

Lemma 2.1. If any red/blue coloring of Kj×s given by Kj×s = HR ⊕HB has a red Pl then there

exists a partite set that contains at least
⌈

l
j

⌉
points of Pl in it.

Proof. The proof follows from the pigeon-hole principle and is left to the reader.
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Lemma 2.2. Let j ≥ 3. If an = n−
⌈
n

j

⌉
then (an)n∈N is monotonically increasing sequence and

an−1 − an−3 ≥ 1 for all n ≥ 3. Also,

an−1 − an−2 =


1 if (n− 2) 6= 0mod(j)

0 otherwise

Proof. The proof is left to the reader.

Lemma 2.3. Let kl =
⌈

l
j

⌉
. Consider any red/blue, coloring of Kj×s containing the red path of

size l. If δR ≥ l − kl + 1, then there exists a red path of size l + 1.

Proof. Assume that such a red path of size l + 1 does not exist.

Claim: There exists a red Pl with say x as its end point such that Cx contains at least kl number of
vertices of Pl.
Proof of Claim: Let a, y be the end vertices of the red path containing l points. By the previous
lemma, let V be a partite set containing at least kl vertices of this Pl. Let C = V (Pl). If a ∈ V
or y ∈ V the claim follows. Suppose that a /∈ V and y /∈ V as shown in the following diagram.
Let Pl be given by a, ..., y1, z1, ..., y2, z2, ..., ykl , zkl , ..., y, where {y1, y2, y3, ..., ykl} ⊆ V . Note that
in general zkl may coincide with y. As Pl is a path of length l, a cannot be adjacent in red to any
vertices outside V (Pl). Then there are two possibilities.

z5 = y

y3
z3

y2

V1

z4

y5

y1
a

z2

z1

y4

V2 = V V3 V4

Example of a situation where l = 17, j = 4, and kl = 5

Case 1: (Ca)
c ∩ {z1, z2, z3, ..., zkl−1} 6= φ.

Then |Ca ∪ {z1, z2, z3, ..., zkl−1}| ≥ kl. That is, the vertex a is adjacent in red to some vertex zi for
some i ∈ {1, 2, ..., kl − 1}.
Then the path yi..., zi−1, yi−1, ..., zi−2, yi−2, ...z1, y1, ..., a, zi, ..., yi+1, zi+1, ...ykl , zkl , ..., y is a red
Pl with yi as its end vertex such that yi ∈ V , which contains at least kl number of vertices of this
Pl.
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Case 2: {z1, z2, z3, ..., zkl−1} ⊆ Ca

Then it follows that Pl is a longest red path with a as its end point such that Ca contains at least kl
number of vertices of Pl.

Hence we get claim from the two cases.

But then as δR ≥ l − kl + 1, this path obtained from the claim can be extended to a path of size
l + 1, a contradiction. Hence, the lemma.

Lemma 2.4. mj(Pn, Sm) ≤ mj(Pn, Sm+1) for any n,m.

Proof. We skip this proof as its an elementary result in Ramsey Theory .

Theorem 2.1. mj(Pn, Sm+1) ≤
⌈
n+m− 1− k

j − 1

⌉
for j ≥ 3.

Proof. Let j ≥ 3 and kl =
⌈

l
j

⌉
. Also let s =

⌈
n+m− 1− k

j − 1

⌉
. Consider any red/blue, red Pn

- free and blue Sm+1 - free coloring given by Kj×s = HR ⊕ HB. Let the longest red path be Pl

where l ≤ n− 1. Then for any vertex x ∈ Kj×s,

dR(x) = s(j − 1)− dB(x) ≥ n+m− k − 1− (m− 1) = n− k ≥ l − kl + 1

Therefore, by lemma 2.3, we will obtain a red path of size l + 1, a contradiction.

Lemma 2.5. Suppose that j ≥ 3 and n + 1 − k = s(j − 1) − p where p ∈ {0, 1, ..., j − 2} and

s =

⌈
n+ 1− k
j − 1

⌉
. Then, mj(Pn, S3) = s if (s− 1)j can be expressed as a linear combination of

n− 2 if n− 2 = 0mod j and n− 1.

Proof. It suffices to show that mj(Pn, S3) ≥ s. Let k1 =
⌈
n−2
j

⌉
.

Construct a red/blue coloring of Kj×(s−1) = HR ⊕ HB, by partitioning (s − 1)j (using a lexi-
cographical type ordering with respect to rows) in to sets satisfying either one of the following
categories.
a) Consists of size n− 1 such that any such set intersected with any partite set will have k or k− 1
elements.
b) Consists of size n−2 where n−2 = 0mod j such that any such set intersected with any partite
set will have k1 elements. However, since n − 2 = 0 mod j we get that any such set intersected
with any partite set will in fact have k − 1 elements.
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Color the edge (a, b) in red if a and b belong to the same set, else color (a, b) in blue. By construc-
tion HR is Pn - free. Let x be any point of Kj×(s−1). Then by the above construction,
a) If x is contained in a set of size n− 1 then the number of elements of that set, contained in the
partite set which x belongs to will be k or k − 1. Then,

dB(x) = (s− 1)(j − 1)− ((n− 1)− k) = n+ 2− k + p− j − (n− k − 1) ≤ 1

or

dB(x) = (s− 1)(j − 1)− ((n− 1)− (k − 1)) = n+ 2− k + p− j − (n− k) ≤ 1

b) If x is contained in a set of size n− 2 then the number of elements of that set, contained in the
partite set which x belongs to will be k − 1. Then,

dB(x) = (s− 1)(j − 1)− ((n− 2)− (k − 1)) = n+ 2− k + p− j − (n− k − 1) ≤ 1

Therefore, HB will not contain a blue S3. Hence the result.

Lemma 2.6. Let j ≥ 3 and n+m−1−k = s(j−1)−p where p = j−2, s =
⌈
n+m− 1− k

j − 1

⌉
.

Then, mj(Pn, Sm+1) = s if (s−1)j can be expressed as a linear combination of n−2 if n−2 = 0
mod j and n− 1.

Proof. It suffices to show that mj(Pn, Sm+1) ≥ s. Let k1 =
⌈
n−2
j

⌉
.

Construct a red/blue coloring of Kj×(s−1) = HR ⊕ HB, by partitioning (s − 1)j (using a lexi-
cographical type ordering with respect to rows) in to sets satisfying either one of the following
categories.
a) Consists of size n− 1 such that any such set intersected with any partite set will have k or k− 1
elements.
b) Consists of size n−2 where n−2 = 0mod j such that any such set intersected with any partite
set will have k1 elements. However, since n − 2 = 0 mod j we get that any such set intersected
with any partite set will in fact have k − 1 elements.

Color the edge (a, b) in red if a and b belong to the same set, else color (a, b) in blue. By construc-
tion HR is Pn - free. Let x be any point of Kj×(s−1). Then by the above construction,
a) If x is contained in a set of size n− 1 then the number of elements of that set, contained in the
partite set which x belongs to will be k or k − 1. Then,

dB(x) = (s− 1)(j − 1)− ((n− 1)− k) = n+m− 2− k − (n− k − 1) = m− 1

or

dB(x) = (s− 1)(j − 1)− ((n− 1)− (k − 1)) = n+m− 2− k − (n− k) = m− 2
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b) If x is contained in a set of size n− 2 then the number of elements of that set, contained in the
partite set which x belongs to will be k − 1. Then,

dB(x) = (s− 1)(j − 1)− ((n− 2)− (k − 1)) = n+m− 2− k − (n− k − 1) = m− 1

Therefore, HB will not contain a blue Sm+1. Hence the result.

Lemma 2.7. Let j ≥ 3, m ≥ 2 and n+m− 1− k = s(j− 1)− p where p ∈ {0, 1, ..., j− 2}, s =⌈
n+m− 1− k

j − 1

⌉
. Then, mj(Pn, Sm+1) = s if (s− 1)j can be expressed as a linear combination

of n− 2 if n− 2 = 0mod j and n− 1.

Proof. Let j ≥ 3. Suppose that (s − 1)j can be expressed as a linear combination of n − 2 if
n− 2 = 0mod j and n− 1.

Case 1: Given n and m we can find a m′ ≥ 2 such that

n+m′ − 1− k = s(j − 1)− (j − 2) and 0 ≤ m−m′ < j − 1

where s =
⌈
n+m′ − 1− k

j − 1

⌉
.

From lemma 2.6, we get that mj(Pn, Sm′+1) = s. Applying lemma 2.4 to this result, gives us

mj(Pn, Sm+1) ≥ s. Also we can observe that s =

⌈
n+m′ − 1− k

j − 1

⌉
=

⌈
n+m− 1− k

j − 1

⌉
.

Hence by theorem 2.1, we also get mj(Pn, Sm+1) ≤ s.
Therefore, we can conclude that mj(Pn, Sm+1) = s.

Case 2: If no such m′ satisfying m′ ≥ 2 exists, then we get that 2 ≤ m < j and

n+ 2− 1− k = s(j − 1)− (j − 2)

where s =
⌈
n+ 2− 1− k

j − 1

⌉
.

From lemma 2.5, we get that mj(Pn, S3) = s. Applying lemma 2.4 to this result, gives us

mj(Pn, Sm+1) ≥ s. Also we can observe that s =
⌈
n+m− 1− k

j − 1

⌉
=

⌈
n+ 2− 1− k

j − 1

⌉
. Hence

by theorem 2.1, we also get mj(Pn, Sm+1) ≤ s.
Therefore, we can conclude that mj(Pn, Sm+1) = s.

3. Some related results

In this section we first try to find a necessary and sufficient condition needed formj(Pn, Sm+1) ≤ s
corresponding to p = j−2. Given any positive integer s and j ≥ 3, in the later part of the theorem
we will obtain an infinite class of pairs (n,m) achieving the upper bound s for mj(Pn, Sm+1).
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Lemma 3.1. Let n+m−1−k = s(j−1)−p where p = j−2, s =
⌈
n+m− 1− k

j − 1

⌉
and n ≥ 3.

Then mj(Pn, Sm+1) ≤ s − 1 if for any red/blue coloring of Kj×s−1 = HR ⊕ HB, HR cannot be
partitioned in to a combination of connected components of size (n − 2) satisfying the additional
condition n− 2 = 0mod j or else of size (n− 1).

Proof. Suppose thatmj(Pn, Sm+1) ≤ s−1 is false. That ismj(Pn, Sm+1) ≥ s. Hence, by theorem
2.1, mj(Pn, Sm+1) = s. Therefore, there exists a blue Sm+1 - free and a red Pn - free, red/blue,
coloring ofKj×s−1 = HR⊕HB, containing a red path of size l where l ≤ n−1. If the longest path
of the graph is of size less than or equal to n− 3, then as (s− 1)(j − 1)− (m− 1) = n− 1− k ≥
(n−3)−kn−3+1 by lemma 2.2 and lemma 2.3 we can obtain a path of size l+1, a contradiction.
Similarly if the longest path is of size n − 2 with n − 2 satisfying the additional condition that
n− 2 6= 0mod j again by lemma 2.2 and lemma 2.3, we can obtain a path of size n− 1, as

(s− 1)(j − 1)− (m− 1) = n− 1− k = (n− 2)− kn−2 + 1

a contradiction. Hence the longest red path is of size either equal to n − 1 or else equal to n − 2
with the additional condition that n− 2 = 0mod j. Let C be the set of vertices of the longest red
path.
If there exists a longest red path of size n− 1, let x, y be its end vertices. By lemma 2.1, let V be
the partite set containing at least k vertices (namely y1, y2, ..., yk) of this Pn−1. Then as there is no
blue K1,m,

dR(x) = (s− 1)(j − 1)− dB(x) ≥ n− k − 1

Case 1) If x ∈ V and y ∈ V . In the scenario that the path is contained in two partite sets we will
get that in fact these two partite sets will contain |Cx| and |Cx| − 1 elements of the Pn−1 vertices
in them, this gives us n ≥ 2k. But then as x is not adjacent to any vertices by a red edge outside of
Pn−1, n− k − 1 ≤ |Cx| − 1. That is n ≤ 2k. Hence n = 2k. However,

n

2
=

⌈
n− 1

j

⌉
<
n− 1

j
+ 1 ≤ n− 1

3
+ 1

Using n is even, we get n < 3. A contradiction. Hence, this scenario is not possible.
Therefore, there is an edge (a, b) of Pn−1 = x, ..., a, b, ..., y where a, b /∈ V . But then as dR(x) ≥
n− k − 1, (x, b) and (y, a) will be red edges. This will result in a cycle containing all the vertices
of Pn−1. Thus all the vertices of this longest path cannot be adjacent to any vertices outside the
path in red.

Case 2) If x ∈ V and y /∈ V then let Pn−1 be x, ..., y1, z1, ..., y2, z2, ..., y3, z3, ..., yk, zk, ..., y where
zk may coincide with y and {y1, y2, z3, ..., yk} ⊆ V . But since dR(x) ≥ n − k − 1, (x, y) is red.
This will give a red cycle of size n − 1. Therefore, will get that the vertices of this longest path
cannot be adjacent to any vertices outside the path in red.

Case 3) If x /∈ V and y /∈ V let Pn−1 be x, ..., y1, z1, ..., y2, z2, ..., y3, z3, ..., yk, zk, ..., y, where zk
may coincide with y and {y1, y2, z3, ..., yk} ⊆ V . If x is not connected to any zi in red then x can
be adjacent in red to at most n − k − 2 vertices of V (Pn−1). Also x cannot be adjacent in red to
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any vertices outside of V (Pn−1). This leads to a contradiction as dR(x) ≥ n− k− 1. Therefore, x
is adjacent in red to one of the vertices of {z1, z2, z3, ..., zk}. But this will give us a red path of size
n− 1 satisfying the conditions of case 2.

Next remove this n − 1 size red component of HR and consider the remaining vertices in HR, if
this too has a longest path of size n−1 we will obtain another red n−1 size component. Removing
this component and repeating this process we will come to a stage where there are no red n − 1
size paths left in the remaining vertices.
Thus in the remaining red graph there will be a longest path of size n − 2 with the additional
condition that n − 2 = 0 mod j. Let x, y be the end vertices of the longest red path containing
n − 2 points. By lemma 2.3, let V be the partite set containing at least kn−2 = k − 1(namely
y1, y2, ...yk−1) vertices of this Pn−2. Then as there is no blue Sm+1,

dR(x) = (s− 1)(j − 1)− dB(x) ≥ n− k − 1

Case 1) If x ∈ V and y ∈ V . In the scenario that the path is contained in two partite sets we
will get that in fact these two partite sets will contain |Cx| and |Cx| − 1 where C = V (Pn−2).
That is n ≥ 2k + 1. But then as x is not adjacent by a red edge to any vertices outside of Pn−2,
n− k − 1 ≤ |Cx| − 1. That is n ≤ 2k − 1. A contradiction.
Therefore, there is an edge (a, b) of Pn−2 = x, ..., a, b, ..., y where a, b /∈ V . But then as dR(x) ≥
n−k−1 = (n−2)−kn−2, (x, b) and (y, a) will be red edges. This will result in a cycle containing
all the vertices of Pn−2. Thus all the vertices of this longest path cannot be adjacent to any vertices
outside the path by a red edge.

Case 2) If without loss of generarity, say x ∈ V and y /∈ V , then
Pn−2 can be represented as x = y1, z1, ..., y2, z2, ..., y3, z3, ..., yk−1, zk−1, ..., y where zk−1 may
coincide with y and {y1, y2, z3, ..., yk−1} ⊆ V . But then x must be adjacent to a point outside
V (Pn−2) or adjacent to y. The second possibility will result in a red cycle of of size n − 2. The
first possibility leads to a contradiction and from the second possibility we get that all the vertices
of this longest path cannot be adjacent to any vertices outside the path.

Case 3) If x /∈ V and y /∈ V let Pn−2 be x, ..., y1, z1, ..., y2, z2, ..., y3, z3, ..., yk−1, zk−1, ..., y, where
zk may coincide with y and {y1, y2, z3, ..., yk−1} ⊆ V . If x is not connected to any zi in red then x
can be adjacent in red to at most n− k − 2 vertices of V (Pn−2). Also x cannot be adjacent in red
to any vertices outside of V (Pn−2). This leads to a contradiction as dR(x) ≥ n− k− 1. Therefore,
x is adjacent in red to one of the vertices of {z1, z2, z3, ..., zk−1}. But this will give us a red path of
size n− 2 satisfying the conditions of case 2.

Therefore removing this component and repeating this process we will come to a stage where there
are no such red n− 2 size paths remaining. Therefore, we will get that HR can be partitioned in to
connected components of size either (n − 1) or else of size (n − 2) sets satisfying the additional
condition that n− 2 = 0mod j.
Hence the result.
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From lemma 2.6 and lemma 3.1 we obtain the following theorem giving the necessary and suffi-
cient condition for mj(Pn, Sm+1) ≤ s corresponding to p = j − 2.

Theorem 3.1. Let j ≥ 3 and n + m − 1 − k = s(j − 1) − p where p = j − 2 and s =⌈
n+m− 1− k

j − 1

⌉
. Then, mj(Pn, Sm+1) = s if (s− 1)j can be expressed as a linear combination

of n− 2 if n− 2 = 0mod j and n− 1.

Theorem 3.2. Given any positive integer s and j ≥ 3, there exists a pair (n,m) such that
mj(Pn, Sm+1) = s.

Proof. Let n = j + 1 and m = (j − 1)(s − 1) − 1, then theorem 2.1 and lemma 2.7 gives
mj(Pj+1, S(j−1)(s−1)) = s. Hence the theorem.
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