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Abstract

Let G be a finite group and let N be a fixed normal subgroup of G. In this paper, a new kind of
graph on G, namely the intersection graph is defined and studied. We use ΓinG (N) to denote this
graph, with its vertices are all normal subgroups of G and two distinct vertices are adjacent if their
intersection in N . We show some properties of this graph. For instance, the intersection graph is a
simple connected with diameter at most two. Furthermore we give the graph structure of ΓinG ({e})
for some finite groups such as the symmetric, dihedral, special linear group, quaternion and cyclic
groups.
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1. Introduction

Recently, study algebraic structures by graphs associated with them gives rise to many interest-
ing results. Therefore, many mathematicians could associate the group theory with graph theory
such as [1] and [4]. It has been proved that graphs can be interesting tools for the study of groups.

In the following context, some basics and related works are provided. Let H be a group. A non
empty subset S of H is called subgroup if S is a group and denoted by S ≤ H . A subgroup S of
H is called normal if h−1sh ∈ S for all h ∈ H and s ∈ S [2]. A normal subgroup N of H is a
minimal normal subgroup of H if 1 and N are the only normal subgroups of H that are contained
in N . A finite group is solvable if all its composition factors are cyclic of prime order.
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Let Fq be a finite field. Then the general linear group GL(n,Fq) is the group of invertible n
by n matrices with entries in Fq under matrix multiplication. We define the special linear group,
SL(n,Fq) = {A ∈ GL(n,Fq) : |A| = 1}.

Theorem 1.1. [2] Let N be a minimal normal subgroup of H . For all normal subgroups M of H
either N ≤M or N ∩M = 1.

A graph is connected if there is a path connecting any two distinct vertices. The distance
between two distinct vertices is the length of the shortest path connecting them (if such a path does
not exist, define∞. The diameter of a graph G, denoted by diam(G), is defined by the supremum
of the distances between vertices. The girth of a graph, denoted g(G) is the length of the shortest
cycle in the graph G. A graph with no cycles has infinite girth. The minimum among all the
maximum distances between a vertex to all other vertices is considered as the radius of the graph
G and denoted by rad(G).

The r-partite graph is one whose vertex can be partitioned into r subsets so that an edge has
both ends in no subset. A complete r-partite graph is an r-partite graph in which each vertex is
adjacent to every vertex that is not in the same subset. The complete bipartite graph with part
sizes m and n is denoted by Km,n. A graph is called a complete if each pair of vertices is joined
by an edge. We use Kn to denote the complete graph with n vertices. Two graphs G and H are
isomorphic, denoted by G ∼= H , if there is a bijection φ : G→ H of vertices such that the vertices
x and y are adjacent in G if and only if φ(x) and φ(y) are adjacent in H . A connected graph can be
drawn without any edges crossing, it is called planar. A vertex v of a connected graph G is called a
cut vertex of G, if G \ v (Delete v from G) results in a disconnected graph. Removing a cut vertex
from a graph breaks it into two or more graphs. A connected graph with no cycles is called a tree.
[3]. Throughout this paper we consider a finite simple un-directed graph.

Theorem 1.2 (Kuratowski’s Theorem). [3] A graph is non-planar if and only if it contains a
subgraph homeomorphic to K3,3 or K5.

2. Some properties of the intersection graphs

In this section, we study the intersection graph of finite groups G. The structure of G is deter-
mined. As well, some related results are obtained.

Definition 2.1. Let G be a finite group and N (G) be the set of all normal subgroups of G and
N ∈ N (G). The intersection graph denoted by ΓinG (N) is a undirected graph whose vertex set is
N (G) and two distinct vertices are adjacent if their intersection lies in N .

Example 2.1. Consider the group of integer modulo 8, that is Z8. The interaction normal graphs
for normal subgroups {0}, {0, 4}, {0, 2, 4, 6} and Z8 are ΓinG ({0}) = K1,3,Γ

in
G ({0, 4}) = K4 \

{one− edge} and ΓinG ({0, 2, 4, 6}) = ΓinG (Z8) = K4.

Example 2.2. Consider the Klein four group V4 = {e, a, b, c} where a2 = b2 = c2 = e and
ab = ba, ac = ca, bc = ca. The interaction graph ΓinG ({e}) is given in Figure 1.
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Figure 1. This is the caption of figure

Remark 2.1. 1. A finite group G is simple if and only if ΓinG (N) = K2.
2. The number of edges of ΓinG (N) between p− 1 and p(p−1)

2
, where |N (G)| = p.

Lemma 2.1. Let N1, N2, ..., Nl be normal subgroups of a finite group G. Then

1. ΓinG (G) = K|N (G)|.
2. ΓinG (

⋂
i∈Λ Ni) =

⋂
i∈Λ ΓinG (Ni).

Proof. The proof is clear.

Lemma 2.2. Let N be a minimal normal subgroup of G and L be a non trivial normal subroup of
G. Then degΓin

G (L)({e}) = degΓin
G (L)(N) = |N (G)|.

Proof. Based on Theorem 1.1, thus N ∩ L = N or N ∩ L = {e}. In both cases we obtain N ⊆ L
or {e} ⊂ L. Thus degΓin

G (L)(N) = |N (G)|.

Proposition 2.1. If G has normal subgroups Ni such that {e} = N0 ⊂ N1 ⊂ N2 ⊂ ... ⊂ Nr ⊂
Nr+1 = G, then

1. ΓinG (G) and ΓinG (Nr) are identical.
2. ΓinG ({e}) = K1,r+1

3. ΓinG (Ni) is a subgraph of ΓinG (Nl) where l > i.

Proof. First, it is clear that they have the same number of vertices. Let e = NiNj be an edge in
ΓinG (Nr), that is Ni ∩ Nj ⊆ Nr ⊆ G. This implies that e = NiNj is an edge in ΓinG (G). On the
other hand, let e = NiNj be an edge in ΓinG (G), that is Ni ∩ Nj ⊆ G. If either Ni or Nj is Nr,
then we are done. If neither Ni nor Nj is Nr, then Ni ∩ Nj = Nr̄ ⊆ Nr where r̄ = min{i, j}.
Thus e is an edge of ΓinG (G). Second, Since Ni ∩Nj = Nl 6⊂ {e} for i, j ∈ {1, 2, ..., r + 1} where
l = min{i, j} and Ni ∩ {e} = {e}, then the result follows. Third, the proof is clear.
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As a direct consequence of Proposition 2.1, the following results are obtained.

Corollary 2.1. If G has normal subgroups N1, ..., Nr such that {e} ⊆ N1 ⊆ ... ⊆ Nr ⊆ G.

1. If it has length 3, then ΓinG ({e}) ⊆ ΓinG (N1) ⊆ ΓinG (G) or (K1,2 ⊆ K3 ⊆ K3).
2. If it has length 4, then ΓinG ({e}) ⊆ ΓinG (N1) ⊆ ΓinG (N2) ⊆ ΓinG (G)

or (K1,3 ⊆ K4 \ {one edge} ⊆ K4 ⊆ K4).

Proposition 2.2. If G is a finite solvable group and ΓinG ({e}) = K1,2, then

1. G is a cyclic p-group of order p2.
2. G is a semidirect product G = P o Q, where P is an elementary abelian p-group and Q is

a cyclic group of order q, with p and q being distinct primes.

Proof. Since ΓinG ({e}) = K1,2, then G has a unique non trivial normal subgroup. The proof of
rests follow from Theorem 1.2 in [5].

Note that the converse of 1. in Proposition 2.2 is true and it can be seen in Proposition 3.3. The
following example shows that the converse of 2. in Proposition 2.2 is not true.

Example 2.3. The group AGammaL(1, 8) is the semi-direct product of C8 by C7 : C3. But
ΓinG ({e}) 6= K1,3.

Proposition 2.3. If G is a finite non solvable group and ΓinG ({e}) = K1,2, then G describe in
Theorem 1.2 in [5].

Proof. The proof is similar as Proposition 2.2.

Example 2.4. Consider the groupG = GL(2, 3) and it has 5 normal subgroups such as {e}, C2, Q8,
SL(2, 3) andGL(2, 3). The corresponding intersection graphs areK1,4 ⊆ H ⊆ K4 \{e} ⊆ K4 ⊆
K4 where the intersection graph of H is given in Figure 2.
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Figure 2. The intersection graph of H

Lemma 2.3. Let ΓinG (N) be the intersection graph. Then

d(Hi, Hj) =

{
1 if Hi ∩Hj ⊆ N
2 if Hi ∩Hj 6⊆ N

Proof. The proof is clear.

Proposition 2.4. Let G be a finite group and N be a normal subgroup of G. Then ΓinG (N) is
connected graph with diameter at most 2 and radius 1.

Proof. The proof is clear.

Proposition 2.5. Let G be a finite group with at least two minimal normal subgroups. Then
ΓinG ({e}) is not tree graph. Furthermore, ΓinG (N) has girth 3.

Proof. Since G has at least two minimal normal subgroups N1 and N2, thus the normal subgroups
with trivial normal subgroup gives the cycle K3 in ΓinG ({e}). Therefore ΓinG ({e}) is not tree. Based
on Proposition 2.1, ΓinG ({e}) is a subgraph of ΓinG (N). Hence ΓinG (N) has girth 3.

Theorem 2.1. Let G be a finite group with non trivial normal proper subgroups N1, ..., Nr. If
|E(ΓinG (Ni))| = |E(ΓinG (Nj))| and |Ni| = |Nj| for some i, j. Then ΓinG (Ni) and ΓinG (Nj) are
isomorphic.

Proof. Define f : V (ΓinG (Ni))→ V (ΓinG (Nj)) by f(Hi) = Hj , f(Hj) = Hi and f(Hl) = Hl where
l 6= i, j. It is clear that f is bijective. Let HmHs be an edge in ΓinG (Ni) that is Hm ∩Hs ⊆ Hi. If
m, s 6= i, j then f(Hm∩Hs) ⊆ f(Hi), that is Hm∩Hs ⊆ Hj . Thus, HmHs is an edge in ΓinG (Nj).
If m = i or s = i (m = j or s = j), then the result follows.

The following examples show that the converse of Theorem 2.1 is not true.
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Example 2.5. Let G = C21 be a cyclic group. Then, ΓinG (C3) ∼= ΓinG (C7).

Example 2.6. The groups GL(3, 3) and GL(3, 8) have the same number of normal subgroups.
Thus, their intersection graphs are identical.

Proposition 2.6. Let G be a finite group with at least four minimal normal subgroups. Then
ΓinG (N) is not planar graph.

Proof. Suppose that G is finite group with four minimal normal subgroups Ni for i = 1, 2, 3, 4.
It is clear that Ni ∩ Nj = {e} for i 6= j. These minimal normal subgroups together with trivial
normal group produce K5 in ΓinG ({e}). From Theorem 1.2, the result is obtain.

Proposition 2.7. Let ΓinG ({e}) be the intersection graph, with at least two minimal normal sub-
groups of G then {e} is a cut vertex.

Proof. If ΓinG ({e}) is a star graph, then the proof is clear. If ΓinG ({e}) is not star graph, then using
Lemma 2.2, degΓin

G ({e})({e}) = l where l = |N (G)| and degΓin
G ({e})(G) = 1. Therefore, vertex G

is isolated vertex in ΓinG ({e}) \ {e}. Thus, the graph is disconnected and {e} is a cut vertex.

3. The intersection graph of some special finite groups

In this section, we find the intersection graph for the famous known groups.

Lemma 3.1. If G is the symmetric group Sn and n > 2, then

ΓinG ({e}) =

{
K1,3 if n = 4,

K1,2 otherwise

Proof 3.1. It is known that S4 has four normal subgroups as follows: {e} ⊆ C2 ⊆ C2 × C2 ⊆
A4 ⊆ S4 and otherwise we have {e} ⊆ An ⊆ Sn. By Proposition 2.1, the result follows.

Lemma 3.2. If G = SL(3, q) where q is a prime power, then

ΓinG ({e}) =

{
K1,2 if q ∼= 1 mod 3,

K2 otherwise

Proof. The proof is clear.

Lemma 3.3. If G = SL(4, q) where q is a prime power, then

ΓinG ({e}) =


K1,3 if q ∼= 1 mod 4,

K2 if q ∼= 0 mod 4,

K1,2 if q ∼= 2 mod 4.

Proof. The proof is clear.
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Proposition 3.1. Let G ∼= 〈a, b|an = e = b2, bab−1 = a−1〉 be the dihedral group D2n. Then

ΓinG ({e}) =


K1,α+1, if n is odd, and n = pα,

K1,α+3, if n is even, and n = pα,

is not tree, if there exist distinct primes pi and pj
such that n = pα1

1 ...p
αr
r .

Proof. When n is odd, it is clear that G has α + 2 normal subgroups. The rest follows from
Proposition 2.1. In the case that n is even, thus G has α+ 4 normal subgroups. Recall Proposition
2.1, then K1,α+3. Since n = pα1

1 ...p
αr
r , then without loss of generality we assume that n = pα1

1 p
α2
2 .

The proof of the rest follows from Proposition 2.5.

Proposition 3.2. Let G = Q4n be a quaternion group. Then

ΓinG ({e}) =

{
K1,α+4, if n = 2α,

is not tree, otherwise

Proof. The proof is similar as Proposition 3.1.

Proposition 3.3. If G is a cyclic group of order n = pα1
1 ...p

αk
k where pi are prime numbers, then

ΓinG ({e}) =

{
K1,α1 , if k = 1,

is not tree, otherwise

Proof. If k = 1 and α1 = 1 then G is simple group. From Remark 2.1, we have ΓinG ({e}) = K1,1

and the proof of α1 > 1 follows from Proposition 2.1. If k 6= 1, then without loss of generality
we may assume that n = pα1

1 p
α2
2 . So G contains two minimal normal subgroups. These minimal

normal subgroups with {e} gives the cycle C3. Therefore ΓinG ({e}) is not tree graph.

Example 3.1. Consider the cyclic group Zm, where m = 2n3, the graph ΓinG ({e}) contains 1, 2, 3
triangles if n = 1, 2, 3 respectively.

4. Conclusion

In this study, we introduced a new graph called the intersection graph. The graph is found
for the symmetric groups, special linear groups, dihedral groups and others. Furthermore, some
properties of this graph were determined. We conclude this section with the following questions:

Question. 1. If G is a cyclic group of order n. How many triangles are in ΓinG ({e})?
2. If G = SL(5, q) and q ∼= 1 mod 5. What is the structure of the graph ΓinG ({e})?
3. If we replace vertex set with subgroups of G. What is the structure of the graph ΓinG ({e})?
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