INDONESIAN JOURNAL
OF COMBINATORICS

On graphs with α - and b-edge consecutive edge magic labelings

Christian Barrientos
Valencia College, Orlando, FL 32832, U.S.A.
chr_barrientos@yahoo.com

Abstract

Among the most studied graph labelings we have the varieties called alpha and edge-magic. Even when their definitions seem completely different, these labelings are related. A graceful labeling of a bipartite graph is called an α-labeling if the smaller labels are assigned to vertices of the same stable set. An edge-magic labeling of a graph of size n is said to be b-edge consecutive when its edges are labeled with the integers $b+1, b+2, \ldots, b+n$, for some $0 \leq b \leq n$. In this work, we prove the existence of several b-edge consecutive edge-magic labelings for any graph of order m and size $m-1$ that admits an α-labeling. In addition, we determine the exact value of b induced by the α-labeling, as well as for its reverse, complementary, and reverse complementary labelings.

Keywords: α-labeling, edge-magic graph, b-edge consecutive
Mathematics Subject Classification : 05C78

1. Introduction

Let G be a graph of order m and size n; the graph G is said to be edge-magic if there exists a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, m+n\}$ such that $f(u)+f(v)+f(u v)=k$ for all $u v \in E(G)$, where k is a constant. We refer to k as the valence of f; some authors called k the magic constant of f. This type of total labeling was originally introduced by Kotzig and Rosa [8]. Enomoto et al. [5] said that an edge-magic labeling is super when the set of vertex labels is $\{1,2, \ldots, m\}$. The proof of the following lemma can be found in [6].

Received: 13 December 2021, Revised: 01 June 2022, Accepted: 30 June 2022.

Lemma 1.1. A graph G of order m and size n is super edge-magic if and only if there exists a bijection $f: V(G) \rightarrow\{1,2, \ldots, m\}$ such that the set $\{f(u)+f(v): u v \in E(G)\}$ consists of n consecutive integers.

An outline of the proof of this result is the following. Assuming that for a graph G of order m and size n, there exists a bijection $f: V(G) \rightarrow\{1,2, \ldots, m\}$ such that $\{f(u)+f(v): u v \in E(G)\}$ is formed by n consecutive integers, then f can be extended to a super edge-magic labeling by defining $f(u v)=m+n-i$, where $i=f(u)+f(v)-\min \{f(x)+f(y): x y \in E(G)\}$. Note that the valence of f is $m+n+\min \{f(x)+f(y): x y \in E(G)\}$. In Figure 1 we show an example of this labeling for the graph $2 C_{8} \cup P_{2}$; in this example $m=18, n=17$, and the valence of the labeling is $k=46$.

Figure 1. Super edge-magic labeling of $2 C_{8} \cup P_{2}$ where the valence is $k=46$

Sugeng and Miller [12] said that an edge-magic labeling is b-edge consecutive when the set of edge labels is $\{b+1, b+2, \ldots, b+n\}$ for some $b \in\{0,1, \ldots, n\}$. Based on this definition we can see that any super edge-magic labeling of a graph of order m is an m-edge consecutive edge-magic labeling. Let f be a b-edge consecutive edge-magic labeling of a graph of order m and size n. The dual labeling of f (also called the complementary of f) is the labeling \bar{f} defined as $\bar{f}(x)=m+n+1-f(x)$ for every $x \in V(G) \cup E(G)$. It is well-known that \bar{f} is an edge-magic labeling; moreover, \bar{f} is indeed a b-edge consecutive labeling because f is b-edge consecutive; therefore, $\{m+n+1-f(x): x \in E(G)\}$ is a set of n consecutive integers. We must observe that if k is the valence of f, then the valence of \bar{f} is $3(m+n+1)-k$.

Two results about b-edge consecutive edge-magic labelings, proven in [12], that are relevant in this work are:

Theorem 1.1. Let G be a connected graph of order m. If there is a b-edge consecutive edge-magic labeling of G, for some $b \in\{1,2, \ldots, m-1\}$, then G is a tree.

Theorem 1.2. If G is a caterpillar of size n, then G admits a b-edge consecutive edge-magic labeling, where the value of b depends on the diameter and the number of leaves.

In [13], Sugeng and Silavan extended the results in [12], by providing several classes of trees that admit this type of total labeling. They showed that regular caterpillars, firecrackers, caterpillarlike trees, path-like trees, and banana trees, are b-edge consecutive edge-magic graphs; we must
note that the word regular has a different connotation for each variety of tree considered in [13].
Let G be a bipartite graph of order m and size n which stable sets are S_{1} and S_{2}. Rosa ${ }^{1}$ [10] defined an α-labeling of G as an injective function $f: V(G) \rightarrow\{1,2, \ldots, n+1\}$ such that $\{|f(u)-f(v)|: u v \in E(G)\}=\{1,2, \ldots, n\}$ and for every $(u, v) \in S_{1} \times S_{2}, f(u)<f(v)$. The boundary value of f is $\max \left\{f(u): u \in S_{1}\right\}$. As an immediate application of this kind of labeling, Rosa proved that there exists a cyclic decomposition of $K_{2 t n+1}$ into copies of any graph of size n that admits an α-labeling. An α-graph is any graph that can be α-labeled. Among other results, Rosa showed that all caterpillars are α-trees. Several papers have followed Rosa' seminal work and multiple classes of α-trees are known. For example, in [9], Kotzig proved that almost all trees can be α-labeled; other two families of α-trees are the path-like trees [1] and the triangular trees [4]. Gallian [7] devotes an entire section of his survey to this labeling.

Suppose that G is an α-graph. Let S_{1} and S_{2} be the stable sets of G, where $s_{1}=\left|S_{1}\right|$ and $s_{2}=\left|S_{2}\right|$. Assuming that f is an α-labeling of G that assigns the label 1 to a vertex of S_{1}, then the valence of the m-edge consecutive edge-magic labeling obtained from f is $k=2 m+1+s_{1}$. The complementary labeling of f, which is defined by $\bar{f}(v)=m+1-f(v)$ for each $v \in V(G)$, places the label 1 on an element of S_{2}. Since \bar{f} is also an α-labeling of G, the m-edge consecutive edge-magic labeling obtained using \bar{f} instead of f, has valence $k=2 m+1+s_{2}$.

Several years after the publication of his seminal paper on difference vertex labeling, Rosa [11] introduced the following definition. Let f be an α-labeling of a graph G of size n that assigns the label 1 to a vertex of S_{1}; the α-labeling f_{r} of G given by

$$
f_{r}(v)=s_{1}+1-f(v)(\bmod n+1)
$$

is called inverse labeling of f. This labeling is also called reverse labeling of f. In general, $f \neq f_{r}$ but they have the same boundary value. Consequently, if f is an α-labeling of G, then \bar{f}, f_{r}, and \bar{f}_{r} are also α-labelings of G, where f and f_{r} have boundary value s_{1}, while \bar{f} and \bar{f}_{r} have boundary value s_{2}. With all these facts, the proof of the following result is straightforward.

Theorem 1.3. Let G be an α-graph of order m and size $m-1$, and let f be an α-labeling of G such that the vertex labeled 1 by f is in S_{1}. If $f \neq f_{r}$, then there are four m-edge consecutive edge-magic labelings of G, two with valence $2 m+1+s_{1}$ and two with valence $2 m+1+s_{2}$.

In Figure 2 we show the labelings f, f_{r}, \bar{f}, and \bar{f}_{r} for a tree of order 11 with stable sets of cardinalities 5 and 6 ; in addition, we show the corresponding 11-edge consecutive edge-magic labelings.

In this work, we continue the study of b-edge consecutive edge-magic labelings initiated by Sugeng and Miller, by proving that if G is an α-graph of order m and size $m-1$, then G also admits a b-edge consecutive edge-magic labeling, where b is any of the elements in $\left\{0, m,\left|S_{1}\right|,\left|S_{2}\right|\right\}$.

[^0]

(10)

Figure 2. The α-labelings f, f_{r}, \bar{f}, and \bar{f}_{r} of a tree of order 11 together with their associated b-edge consecutive edge-magic labelings

2. Main Results

In the introduction we mentioned that a super edge-magic labeling of a graph of size m is an m-edge consecutive edge-magic labeling. Figueroa-Centeno et al. [6] proved that if G is an α graph of order m and size $m-1$, then G is super edge-magic. Formulating this result in terms of b-edge consecutive edge-magic labelings we have the following.

Theorem 2.1. If G is an α-graph of order m and size $m-1$, then G admits an m-edge consecutive edge-magic labeling.
Theorem 2.2. If G is an α-graph of order m and size $m-1$, then G admits a 0 -edge consecutive edge-magic labeling.
Proof. Suppose that f is an α-labeling of G. By Theorem 2.1 we know that f can be transformed into a m-edge consecutive edge-magic labeling of G. Let g denote the m-edge consecutive labeling
of G obtained using f. Then, the set of edge labels is $\{m+1, m+2, \ldots, 2 m-1\}$. Therefore, the set of labels assigned by \bar{g} to the edges of G is $\{1,2, \ldots, m-1\}$. Consequently, \bar{g} is a 0 -edge consecutive edge-magic labeling of G.

In the next result we prove that for any α-graph of order m and size $m-1$, with stable sets of cardinalities s_{1} and s_{2}, there exists a b-edge consecutive edge-magic labeling, where b is either s_{1} or s_{2}.

Theorem 2.3. If G is an α-graph of order m and size $m-1$, then there exists a b-edge consecutive edge-magic labeling of G where b is the cardinality of any of its stable sets.

Proof. Suppose that G is an α-graph of order m and size $m-1$, with stable sets S_{1} and S_{2}, where $\left|S_{1}\right|=s_{1}$ and $\left|S_{2}\right|=s_{2}$. Since G is an α-graph, there is an α-labeling f of G that assigns the label 1 to a vertex of S_{1}. Consider the following labeling of the vertices of G :

$$
g(v)= \begin{cases}f(v) & \text { if } v \in S_{1} \\ 2 m+s_{1}-f(v) & \text { if } v \in S_{2}\end{cases}
$$

Thus, the labels assigned by g to the elements of S_{1} form the set $\left\{1,2, \ldots, s_{1}\right\}$, while the elements of S_{2} receive the labels in $\left\{m+s_{1}, m+s_{1}+1, \ldots, 2 m-1\right\}$. Let $u v \in E(G)$ such that $f(v)-f(u)=$ w for some $w \in\{1,2, \ldots, m-1\}$; then

$$
\begin{aligned}
g(v)+g(u) & =2 m+s_{1}-f(v)+f(u) \\
& =2 m+s_{1}-(f(v)-f(u)) \\
& =2 m+s_{1}-w
\end{aligned}
$$

Since $1 \leq w \leq m-1$, we get that $m+s_{1}+1 \leq g(u)+g(v) \leq 2 m+s_{1}-1$. In other terms, $\{g(u)+g(v): u v \in E(G)\}$ is a set of $m-1$ consecutive integers.

We extend the labeling g to include the edges of G. Let $u v \in E(G)$ such that $g(u)+g(v)=$ $2 m+s_{1}-i$ for some $i \in\{1,2, \ldots, m-1\}$, then $g(u v)=m+s_{1}+i$. Hence, the labels assigned to the edges of G form the set $\left\{s_{1}+1, s_{1}+2, \ldots, m+s_{1}-1\right\}$. Consequently, the labels assigned by g to the edges of G are $m-1$ consecutive integers; in addition, the labels on $V(G) \cup E(G)$ form the set $\{1,2, \ldots, 2 m-1\}$. Therefore, g is a s_{1}-edge consecutive edge-magic labeling. Since $\{g(u)+g(v): u v \in E(G)\}=\left\{m+s_{1}+i: 1 \leq i \leq m-1\right\}$, we get that when $u v$ is the edge of G such that $g(u)+g(v)=m+s_{1}+i$, then

$$
g(u)+g(v)+g(u v)=m+s_{1}+i+m+s_{1}-i=2\left(m+s_{1}\right) .
$$

Thus, the valence of g is $k=2\left(m+s_{1}\right)$. Then, g is a s_{1}-edge consecutive edge-magic labeling of G with valence $k=2\left(m+s_{1}\right)$.

If we use \bar{f} instead of f, the resulting labeling is s_{2}-edge consecutive edge-magic, and its valence is $k=2\left(m+s_{2}\right)$.

Figure 3. The α-labelings f and \bar{f} of a disconnected graph of order 22 and size 21 together with their associated b-edge consecutive edge-magic labelings

In Figure 3 we show the two b-edge consecutive edge-magic labelings obtained using f and \bar{f} for a disconnected graph of order 22 , size 21 , with stable sets of cardinalities 10 and 12 .

Since any tree of order m has size $m-1$, we deduce that any α-tree admits a b-edge consecutive edge- magic labeling where b is the cardinality of any of its stable sets.
Corollary 2.1. Let T be an α-tree with a stable set of cardinality b, then T admits a b-edge consecutive edge-magic labeling.

Some families of disconnected α-graphs, of order m and size $m-1$, are known. Let x and y be positive integers such that $y \geq x+2$; in [2], Barrientos and Minion proved that if G_{y} is a caterpillar of size y with stable sets S_{1} and S_{2}, such that there exist $v \in S_{1}$ adjacent to a leaf, and an α-labeling f of G_{y} with the property that $f(v)=s_{1}-x-1$, then $C_{4 x} \cup G_{y}$ is an α-graph. The graph depicted in Figure 3 satisfies the conditions described above, where the vertex v is the vertex labeled 6 in the first representation. Barrientos and Minion [3] continued their work about disconnected graphs that admit an α-labeling; they proved that if G is an α-graph of order and size y, then $t G \cup P_{t}$ is an α-graph for every positive integer t, where P_{t} is the path of order t. Let L_{t-1} be any linear forest of size $t-1$; Barrientos and Minion [3] proved that if G is an α-graph of order m and size n, with $m<n$, then $t G \cup L_{t-1}$ is an α-graph for every $t \geq 2$. Therefore, all these graphs admit a b-edge consecutive edge-magic labeling for some values of b.

3. Conclusions

Suppose that G is a super edge-magic graph of size m. We have presented the fact that a super edge-magic labeling of G is an m-edge consecutive labeling with valence k. We proved that the existence of this m-edge consecutive labeling implies the existence of a 0 -edge consecutive edge-magic labeling as well; the valence of this new labeling is $6 m-k$. In the case where G is a bipartite graph, with stable sets S_{1} and S_{2}, where $\left|S_{1}\right|=s_{1}$ and $\left|S_{2}\right|=s_{2}$, an m-edge consecutive edge-magic labeling exists, provided that G is an α-graph; the valence of the m-edge consecutive labeling is $k=2 m+1+s_{1}$ or $k=2 m+1+s_{2}$, depending on whether the vertex labeled 1 belongs to S_{1} or S_{2}, respectively.

We know now that when G is an α-graph, it also admits a b-edge consecutive edge-magic labeling, where $b=s_{1}$ or $b=s_{2}$, whose valences are $k=2 m+1+s_{1}$ or $k=2 m+1+$ s_{2}, respectively. Furthermore, if we use the reverse labeling of the α-labeling f, we obtain a different b-edge consecutive edge-magic labeling, where the parameters b and k are the same for the labelings f and f_{r}.

Since in the definition of a b-edge consecutive edge-magic labeling of a graph of size n, we have that b could be any element of $\{0,1, \ldots, n\}$, we may ask for which values of b such a labeling exists when the graph is an α-graph.

References

[1] C. Barrientos, Difference Vertex Labelings, Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, 2004.
[2] C. Barrientos and S. Minion, Constructing graceful graphs with caterpillars, J. Algor. Computation, 48 (2016), 117-125.
[3] C. Barrientos and S. Minion, New α-trees and graceful unions of α-graphs and linear forests, J. Combin. Math. Combin. Comput., 108 (2019), 205-220.
[4] C. Barrientos, Alpha graphs with different pendent paths, Elect. J. Graph Th. Appl., 8 (2) (2020), 301-317.
[5] H. Enomoto, A. S. Llado, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math., 34 (1998) 105-109.
[6] R. Figueroa-Centeno, R. Ichishima, and F. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math., 231 (2001) 153-168.
[7] J. A. Gallian, A dynamic survey of graph labeling. Electronic J. Combin., 24(\#DS6.), 2021.
[8] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13 (1970), 451-461.
[9] A. Kotzig, On certain vertex valuations of finite graphs, Util. Math., 4 (1973), 67-73.
[10] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967) 349-355.
[11] A. Rosa, Labelling snakes, Ars Combin., 3 (1977) 67-74.
[12] K. A. Sugeng and M. Miller, On consecutive edge magic total labelings of graphs, J. Discrete Algorithms, 6 (2008) 59-65.
[13] K. A. Sugeng and D. R. Silaban, On b-edge consecutive edge labeling of some regular trees, Indonesian J. Combin., 4 (1) (2020), 76-81.

[^0]: ${ }^{1}$ In the original definition, the codomain of f is $\{0,1, \ldots, n\}$.

