

INDONESIAN JOURNAL OF COMBINATORICS

Some results on cordiality labeling of generalized Jahangir graph

R. Hasni^a, S. Matarneh^a, A. Azaizeh^b

^aSchool of Informatics and Applied Mathematics, University Malaysia Terengganu, 21030 UMT, Kuala Terengganu, Terengganu, Malaysia ^bCollege of Applied Sciences and Community Service, University of Dammam, KSA

hroslan@umt.edu.my, s_math_1985_2009@yahoo.com.my

Abstract

In this paper we consider the cordiality of a generalized Jahangir graph $J_{n,m}$. We give sufficient condition for $J_{n,m}$ to admit (or not admit) the prime cordial labeling, product cordial labeling and total product cordial labeling.

Keywords: Generalized Jahangir graph, Prime cordial labeling, Product cordial labeling, Total product cordial labeling Mathematics Subject Classification: 05C78, 05C38 DOI: 10.19184/ijc.2017.1.2.1

1. Introduction

Let G = (V, E) be the connected, simple and undirected graph with vertex set V and edge set E(G). For standard terminology and notations in Graph Theory, we refer [18]. By a *labeling* we mean any mapping that carries aset of graph elements to a set of numbers (usually positive integers), called *labels*. If the domain of the mapping is the set of vertices or the set of edges, then the labeling is called a *vertex labeling* or (*edge labeling*). If the domain is $V \cup E$ then we call the labeling as *total labeling*. Many labeling schemes have been introduced so far and they are well explored by many researchers. For a dynamic survey on various graph labeling problems, we refer to Gallian [3].

A labeling $f: V(G) \to \{0, 1\}$ is called *binary vertex labeling* of G and f(v) is called the label of the vertex v of G under f. If for an edge e = uv, the induced edge labeling $f^*: E(G) \to \{0, 1\}$

Received: 06 Jan 2017, Revised: 19 May 2017, Accepted: 26 May 2017.

is given by $f^*(e) = |f(u) - f(v)|$. Then $v_f(i)$ is the number of vertices of G having label i under f and $e_f(i)$ is the number of edges of G having label i under f, where i = 0 or 1.

Definition 1. A binary vertex labeling f of a graph G is called a *cordial labeling* if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$. A graph G is *cordial* if it admits cordial labeling.

The concept of cordial labeling was introduced by Cahit [2] as a weaker version of graceful labeling and harmonious labeling.

The notion of prime labeling was originated by Entringer and was introduced by Tout et al. [17]. Motivated by the concepts of prime labeling and cordial labeling, a new concept termed as a prime cordial labeling was introduced by Sundaram et al. [8] as follows.

Definition 2. A prime cordial labeling of a graph G is a bijection $f: V(G) \to \{1, 2, ..., |V(G)|\}$ and the induced edge function $f^*: V(G) \to \{1, 0\}$ is defined by

$$f^*(e = uv) = \begin{cases} 1, & \text{if } gcd(f(u), f(v)) = 1\\ 0, & \text{if } gcd(f(u), f(v)) > 1 \end{cases}$$

satisfies the condition $|e_f(0) - e_f(1)| \le 1$. The graph admits a prime cordial labeling is called a *prime cordial graph*.

Many graph families proved to be prime cordial, for example see [8, 12, 13, 14].

In 2004, Sundaram et al. [9] introduced the product cordial labeling of graph.

Definition 3. Let $f: V(G) \to \{0,1\}$ be a vertex labeling of a graph G that induces an edge labeling function $f^*: E(G) \to \{0,1\}$ such that $f^*(uv) = f(u)f(v)$ where $uv \in E(G)$. Then f is a product cordial labeling if $|v_f(1) - v_f(0)| \le 1$ and $|e_f(1) - e_f(0)| \le 1$. A graph G is product cordial if it admits a product cordial labeling.

In 2006, Sundaram et al. [10] introduced the notion of total product cordial labeling of graph.

Definition 4. Let $f : V(G) \to \{0,1\}$ be a vertex labeling of a graph G that induces an edge labeling function $f^* : E(G) \to \{0,1\}$ such that $f^*(uv) = f(u)f(v)$ where $uv \in E(G)$. Then f is a *total product cordial* labeling if $|(v_f(1) + e_f(1)) - (v_f(0) + e_f(0))| \le 1$. A graph G is total product cordial if it admits a total product cordial labeling.

For more results on product cordial and total product cordial, please refer [4, 5, 6, 9, 10, 11].

For $n, m \ge 2$, the generalized Jahangir graph $J_{n,m}$ is a graph on nm + 1 vertices, that is, the graph consists of a cycle C_{mn} with one additional vertex which adjacent to a m vertices of C_{mn} at distance n to each other on C_{mn} , see [1, 7]. The following figure shows the graph $J_{n,m}$ for n = 3 and m = 10.

In this paper, we investigate prime cordial labeling, product cordial labeling and total product cordial labeling of generalized Jahangir graph $J_{n,m}$.

2. Main Results

In this section, we present our main results.

Figure 1. Jahangir graph $J_{3,10}$

Lemma 2.1. The Jahangir graph $J_{2,m}$, $m \ge 4$ is prime cordial.

Proof. Let $J_{2,m}$, $m \ge 4$ be Jahangir graph with the vertex set $V(J_{2,m}) = \{v\} \cup \{v_i : 1 \le i \le 2m\}$ and the edge set $E(J_{2,m}) = \{v_i v_{i+1} : 1 \le i \le 2m-1\} \cup \{v_{2m} v_1\} \cup \{vv_{2i-1} : 1 \le i \le m\}$. Clearly that $|V(J_{2,m})| = 2m + 1$ and $|E(J_{2,m})| = 3m$.

To show that $J_{2,m}$ is a prime cordial, we define a vertex labeling $f: V(J_{2,m}) \to \{1, 2, \dots, 2m+1\}$ in the following way:

 $f(v) = 2, f(v_1) = 6, f(v_2) = 4, f(v_{2m}) = 3, f(v_{2m-1}) = 9, f(v_{2m-2}) = 5, f(v_{2m-3}) = 7, f(v_{2m-4}) = 1$

$$f(v_i) = \begin{cases} 2(i+1), & \text{if } 3 \le i \le \lfloor \frac{2m-1}{2} \rfloor \\ 4m - 2i + 1, & \text{if } \lfloor \frac{2m-1}{2} \rfloor + 1 \le i \le 2m - 5 \end{cases}$$

We have $|e_f(0)| = \lfloor \frac{3m}{2} \rfloor$ and $|e_f(1)| = \lceil \frac{3m}{2} \rceil$. Then $|e_f(0) - e_f(1)| \le 1$. Hence, the Jahangir graph $J_{2,m}$ is prime cordial.

This completes the proof.

Theorem 2.1. The Jahangir graph $J_{n,m}$, n > 2, m > 3 is prime cordial.

Proof. Let $J_{n,m}$, n > 2, m > 3 be Jahangir graph with the vertex set $V(J_{n,m}) = \{v\} \cup \{v_i : 1 \le i \le mn\}$ and the edge set $E(J_{n,m}) = \{v_i v_{i+1} : 1 \le i \le mn-1\} \cup \{v_{mn}v_1\} \cup \{vv_{n(i-1)+1} : 1 \le i \le m\}$. Clearly that $|V(J_{n,m})| = mn+1$ and $|E(J_{n,m})| = n(m+1)$.

To show that $J_{n,m}$ is prime cordial, we define vertex labeling $f : V(J_{n,m}) \to \{1, 2, \dots, mn+1\}$ as follows:

$$f(v) = 2, f(v_1) = 6, f(v_2) = 4, f(v_{mn}) = 3$$
$$f(v_{mn-1}) = \begin{cases} 1, & \text{for } m, n \text{ are odd} \\ 9, & \text{for otherwise} \end{cases}$$

$$f(v_{mn-2}) = \begin{cases} 5, & \text{for } m, n \text{ are even} \\ & \text{or } m, n \text{ are odd} \\ 1, & \text{for otherwise} \end{cases}$$

$$f(v_{mn-3}) = \begin{cases} 7, & \text{if } m, n \text{ are even} \\ & \text{or } m, n \text{ are odd} \\ 5, & \text{for otherwise} \end{cases}$$

$$f(v_{mn-4}) = \begin{cases} 1, & \text{if } m, n \text{ are even} \\ 9 & \text{if } m, n \text{ are odd} \\ 7, & \text{for otherwise} \end{cases}$$

$$f(v_i) = \begin{cases} 2(i+1), & \text{if } 3 \le i \le \lfloor \frac{nm-1}{2} \rfloor \\ 2mn - 2i + 1, & \text{if } \lfloor \frac{nm-1}{2} \rfloor + 1 \le i \le mn - 5. \end{cases}$$

We have

$$|e_f(0)| = \begin{cases} \frac{(m(n+1)-1)}{2}, & \text{if } m \text{ are even} \\ & \text{and } n \text{ are odd} \\ \frac{(m(n+1))}{2}, & \text{for otherwise} \end{cases}$$
$$|e_f(1)| = \begin{cases} \frac{(m(n+1)+1)}{2}, & \text{if } m \text{ are even} \\ & \text{and } n \text{ are odd} \\ \frac{(m(n+1))}{2}, & \text{for otherwise} \end{cases}$$

It is easy to show that $|e_f(0) - e_f(1)| \le 1$. Hence, the Jahangir graph $J_{n,m}$ is prime cordial. This completes the proof.

The following figure illustrates the prime cordial labeling of graph $J_{3.5}$.

Theorem 2.2. The Jahangir graph $J_{n,m}$ is product cordial with $n \ge 2$, $m \ge 3$, m is odd and n is even.

Proof. Let $J_{n,m}$ with n is even and $n \ge 2$, m is odd and $m \ge 3$, be Jahangir graph with the vertex set $V(J_{n,m}) = \{v\} \cup \{v_i : 1 \leq i \leq mn\}$ and the edge set $E(J_{n,m}) = \{v_i v_{i+1} : 1 \leq i \leq mn\}$ $i \leq mn-1 \cup \{v_{mn}v_1\} \cup \{vv_{n(i-1)+1} : 1 \leq i \leq m\}$. Clearly that $|V(J_{n,m})| = mn+1$ and $|E(J_{n,m})| = m(n+1).$

Figure 2. Prime cordial labeling of $J_{3,5}$

To show that $J_{n,m}$ is product cordial, define a vertex labeling $f : V(J_{n,m}) \to \{0,1\}$ in the following way:

$$f(v) = 1$$

$$f(v_i) = \begin{cases} 1, & \text{if } 1 \le i \le \frac{nm}{2} \\ 0, & \text{if } \frac{nm}{2} + 1 \le i \le mn \end{cases}$$

From the above labeling, we can see that $v_f(1) = \frac{mn+2}{2}$, $v_f(0) = \frac{mn}{2}$, $e_f(1) = \frac{m(n+1)-1}{2}$, $e_f(0) = \frac{m(n+1)+1}{2}$. Hence $|v_f(1) - v_f(0)| = 1$ and $|e_f(1) - e_f(0)| = 1$. Therefore the graph $J_{n,m}$ is product cordial.

This completes the proof.

Figure 3 below illustrates the product cordial labeling of graph $J_{2,5}$.

Figure 3. Product cordial labeling of $J_{2,5}$

In Theorem 2.2, the graph $J_{n,m}$ is product cordial labeling for $n \ge 2$, $m \ge 3$, m is odd and n is even. We have tried to find the product cordial labeling of $J_{n,m}$ for all values of m and n but so far without success. So we pose the following open problem.

Problem 1. Determine product cordial labeling of the Jahangir graph $J_{n,m}$ for all m and n.

Theorem 2.3. The Jahangir graph $J_{n,m}$, $n \ge 2$, $m \ge 3$ is total product cordial.

Proof. Let $J_{n,m}$, $n \ge 2$, $m \ge 3$ be a Jahangir graph with the vertex set $V(J_{n,m}) = \{v\} \cup \{v_i : v_i \}$ $1 \le i \le mn$ and the edge set $E(J_{n,m}) = \{v_i v_{i+1} : 1 \le i \le mn - 1\} \cup \{v_{mn} v_1\} \cup \{v_{n(i-1)+1} : 1 \le i \le mn - 1\} \cup \{v_{mn} v_1\} \cup \{v_{n(i-1)+1} : 1 \le i \le mn - 1\} \cup \{v_{mn} v_1\} \cup \{v_{n(i-1)+1} : 1 \le i \le mn - 1\} \cup \{v_{mn} v_1\} \cup \{v_{mn$ $1 \le i \le m$. Clearly that $|V(J_{n,m})| = mn + 1$ and $|E(J_{n,m})| = m(n+1)$.

To show that $J_{n,m}$ is total product cordial, define a vertex labeling $f: V(J_{n,m}) \to \{0,1\}$ in the following way:

Case 1: m and n are odd.

$$f(v) = 1, f(v_{mn-1}) = 1$$

$$f(v_i) = \begin{cases} 1, & \text{if } 1 \le i \le \frac{nm-1}{2} \\ 0, & \text{if } \frac{nm+1}{2} \le i \le mn, i \ne mn-1 \end{cases}$$

We have $|v_f(1)| = \lceil \frac{mn+2}{2} \rceil$, $|v_f(0)| = \lfloor \frac{mn}{2} \rfloor$, $|e_f(1)| = \frac{m(n+1)-2}{2}$, $|e_f(0)| = \frac{m(n+1)+2}{2}$. It is easy to see that $|(v_f(1) + e_f(1)) - (v_f(0) + e_f(0))| \le 1$. Hence the graph $J_{n,m}$ is total product cordial. Case 2: *m* and *n* are not odd.

f(v) = 1

$$f(v_i) = \begin{cases} 1, & \text{if } 1 \le i \le \frac{nm}{2} \\ 0, & \text{if } \frac{nm+2}{2} \le i \le mn \end{cases}$$

We have $|v_f(1)| = \frac{mn+2}{2}$, $|v_f(0)| = \frac{mn}{2}$, $|e_f(1)| = \lfloor \frac{m(n+1)-1}{2} \rfloor$, $|e_f(0)| = \lceil \frac{m(n+1)+1}{2} \rceil$. It is easy to see that $|(v_f(1) + e_f(1)) - (v_f(0) + e_f(0))| \le 1$. Hence the graph $J_{n,m}$ is total product cordial. This completes the proof.

Figure 4 shows the total product cordial labeling of graph $J_{4.5}$.

Figure 4. Total product cordial labeling of graph $J_{4,5}$

In [15, 16], Vaidya and Barasara introduced an edge product cordial labeling and a total edge product cordial labeling of graph G. Thus, we propose the following problem.

Problem 2. Determine edge product cordial labeling and total edge product cordial labeling of the Jahangir graph $J_{n,m}$ for $n, m \ge 2$.

Acknowledgement The authors would like to thank the referee for his/her valuable comments which improved the paper.

- [1] K. Ali, E.T. Baskoro and I. Tomescu, On the Ramsey number of paths and Jahangir graph $J_{3,m}$, The 3rd International Conference on 21st Century Mathematics, GC University Lahore, Pakistan, 2007.
- [2] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23(1987) 201–207.
- [3] J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 5, vol. 18, p. DS6, 2011.
- [4] Z.B. Gao, G.Y. Sun, Y.N. Zhang, Y. Meng and G.C. Lau, Product cordial and total product cordial labelings of P_{n+1}^m , Journal of Discrete Mathematis, Volume 2015, Article ID 512696, 6 pages.
- [5] H. Kwong, S.M. Lee and H.K. Ng, On product cordial index sets and friendly index sets of 2-regular graphs and generalized wheels, Acta Math. Sinica, English Series, 28(4)(2012), 661–674.
- [6] H. Kwong, S.M. Lee and H.K. Ng, On product cordial index sets of cylinders, Congressus Numerantium, 206(2010), 139–150.
- [7] D. A. Mojdeh and A. N. Ghameshlou domination in Jahangir graph $J_{2,m}$ Int. J. Contemp. Math. Sciences, 2(24)(2007), 1193–1199.
- [8] M. Sundaram, R. Ponraj and S. Somasundram, Prime cordial labeling of graphs, Journal of Indian Academy of Mathematics, 27(2)(2005), 373-390.
- [9] M. Sundaram, R. Ponraj and S. Somasundram, Product cordial labeling of graphs, Bulletin of Pure and Applied Science (Mathematics and Statistics), 23(2004), 155–163.
- [10] M. Sundaram, R. Ponraj and S. Somasundram, Total product cordial labeling of graphs, Bulletin of Pure and Applied Science (Mathematics and Statistics), 25(1)(2006), 199–203.
- [11] M. Sundaram, R. Ponraj and S. Somasundram, Some results on total product cordial labeling of graphs, Indian Academy of Mathematics, 28(2)(2006), 309–320.

- [12] S.K. Vaidya and P.L. Vihol, Prime cordial labeling for some cycle related graphs, International Journal of Open Problems in Computer Science and Mathematics, 3(5)(2010), 223– 232.
- [13] S.K. Vaidya and P.L. Vihol, Prime cordial labeling for some graphs, Modern Applied Sciences, 4(8)(2010), 119–126.
- [14] S.K. Vaidya and N.H. Shah, Some new results on prime cordial labeling, ISRN Combinatorics, Volume 2014, Article ID 607018, 9 pages.
- [15] S.K. Vaidya and C.M. Barasara, Edge product cordial labeling of graphs, Journal of Mathematical and Computational Science, 2(5)(2012), 1436–1450.
- [16] S.K. Vaidya and C.M. Barasara, Total edge product cordial labeling of graphs, Malaya Journal of Matematik, 3(1)(2013), 55–63.
- [17] A. Tout, A.N. Dabboucy and K. Howalla, Prime labeling of graphs, National Academy Science Letter, 11(1982), 365–368.
- [18] D.B. West, Introduction to Graph Theory, 2nd Edition, Prentice Hall, USA, 2001.