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Abstract

The metric dimension of an arbitrary connected graph G, denoted by dim((G), is the minimum
cardinality of the resolving set W' of GG. An ordered set W = {wq, ws, - -+ ,wy} is a resolving set
of G if for all two different vertices in G, their metric representations are different with respect
to W. The metric representation of a vertex v with respect to W is defined as k-tuple r(v|W) =
(d(v,wy),d(v,ws),- - ,d(v,wy)), where d(v, w;) is the distance between v and w; for 1 < j < k.
The Buckminsterfullerene graph is a 3-reguler graph on 60 vertices containing some cycles C
and Cy. Let Bf, denotes the t" Bgo for 1 <t < mand m > 2. Let v; be a terminal vertex for
each Bf,. The Buckminsterfullerene-net, denoted by H := Amal{Bf,,v|1 < t < m;m > 2}
is a graph constructed from the identification of all terminal vertices vy, for 1 < ¢ < m and
m > 2, into a new vertex, denoted by v. This paper will determine the metric dimension of the
Buckminsterfullerene-net graph H.
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1. Introduction

Let G = (V, E) be a simple, finite and undirected graph, where V' = V(G) and £ = E(G)
are the vertex-set and the edge-set of GG, respectively. The distance between two arbitrary vertices
u, v in GG, denoted by d(u, v), is the length of the shortest path between them. Let 1 be an ordered
subset of V. The metric representation of some vertex v € V(G) with respect to W is defined
as k-vector (v | W) = (d(v,wy),d(v,wy), - ,d(v,wg)). M r(u | W) # r(v | W) for every
two vertices u, v in GG, then W is called the resolving set of (G. The minimum cardinality of W
is defined as the metric dimension of G, denoted by dim(G) [5]. Other graph terminologies and
notations are taken from [6].

The fundamental results regarding the metric dimension of a graph are given by Chartrand et
al. [5]. They stated the characterizations of some connected graph G with dim(G) = 1, dim(G) =
n — 1 or dim(G) = n — 2, and determined the metric dimension of cycle C,, and an arbitrary
tree I'. Another significant results are the metric dimension of regular bipartite graphs [3], fan F,,
[4], unicyclic graphs [8], n-partite complete graphs [10], the lexicographic product of graphs [11],
wheels, generalized wheel [14] and Jahangir graph [15]. Next, Yulianti er al. [16] determined
the metric dimension of thorn-subdivided graph 7'D(G) of an arbitrary connected graph G on n
vertices. Recent result is the metric dimension of the triangle-net graph by Yulianti ez al. in [17].

Akhter et al. [1] stated that the Fullerene molecule discovered by Kroto et al. [7] can be
represented as a Fullerene graph. In the same paper, they considered the metric dimension of (3, 6)-
Fullerene and (4, 6)-Fullerene, where (k, 6)-Fullerene is a planar 3-connected graph containing
cycles on k and 6 vertices. The Buckminsterfullerene graph, denoted by By, is one of the (5, 6)-
Fullerene on 60 vertices. The definition of Bgy was taken from Andova et al. [2].

Putri et al. [9] stated that the metric dimension of the Buckminsterfullerene graph By is three.
Using this result, we constructed the Buckminsterfullerene-net graph as follows. Denote B, as the
t*" Buckminsterfullerene graph Bgy for 1 <t < m and m > 2; and define v; as the terminal vertex
for every B(,. The Buckminsterfullerene-net, denoted by H := Amal{Bf,,v|1 <t < m;m > 2}
is a graph constructed from the identification of all terminal vertices vy, for 1 < ¢ < m and
m > 2, into a new vertex, denoted by v. In this paper we determine the metric dimension of the
Buckminsterfullerene-net graph H.

2. The Buckminsterfullerene-net Graph

Putri et al. [9] gave the vertex set and the edge set of Bg as follows.

V(Bgo) = {vi,zi|1<i<5}U{w;,y; |1<5<15 U {z; | 1<k <20}, (1)
E(Bg) = {vvar,zizie |1 <1 <4}y U{wnwmet, YmYme1 | 1 <m < 14}

U {zpzpqr | 1 <k <193 U {v1vs, 2125, wiwis, Y1Y15, L1220 }

U {viwsi—o, W3i—174i—2, T4i—1y3i—1 | 1 <1 < 5}

U {wsigp1, Taysier, ysizign | 1 <0< 4}

U {wisr1, 220y1, Y15, 21 }- (2)

The Buckminsterfullerene graph By is given in Figure 1.
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Figure 1. [9] The Buckminsterfullerene graph By

Let ¢ be a positive integer, 1 < ¢ < m, and m > 2. Denote ng’ as the t** Buckminsterfullerene.

The vertex set and the edge set of Bég) are defined similarly as in (1) and (2).

V(BY) = {vns 200 | 1<i <5y U{wrj,y | 1<j<15YU{s | 1<k <20},

E(BY) = {veaviiet, zeizeie1 | 1 < U< A} UA{wWemWems1s YemYrmr | 1 < m < 14},
U{Ztn®intr | 1 <n <19} U{vves, 20125, We1Weas, Ye1Yeis, Te1Te20 b
U{veiwegice |1 <@ <B}U{wrsimi@iai—o |1 <@ <bYU{wpgzpa |1 <1 <4},
U{ztai1¥esior |1 <@ <5} U{xiayzi |1 <1 <4}
U{yesiziie |1 <1 <4}y U{we1s2e1, Tr20Ye1s Yeis2e1 ) -

We construct the Buckminsterfullerene-net H = Amal{Bf,,v|1 <t < m,m > 2} by identifying
the vertices v, ; for 1 < ¢ < m, into a new vertex, namely v. The vertex set and edge set of I are
as follows.

VH) = [J VB U} \{ua [ 1<t <m), (3)
=1

E(H) = U E(Bég)) U{vvgo, vop5, 0wy |1 <t < m}
=1
\ {vr1ve2, veaves, vewes | 1 <t <m}. 4

3. The Metric Dimension of H

Simanjuntak et al. [13] gave the lower and upper bounds for the metric dimension of amalga-
mation of arbitrary connected graphs, as stated in Theorem 3.1.
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Table 1. The representation of Bg

v [ r(v]| W) v | r(v]| W) v | r(v| W) v | r(v| W)
v | (0,3,5) e | (4,2,6) wy | (1,2,6) y1 | (5,5,7)
ve | (1,4,4) xz7 | (5,3,6) wy | (2,1,7) y2 | (5,4,8)
v | (2,4,3) xg | (6,4,5) ws | (3,0,7) ys | (6,4,7)
V4 (2,3,4) L9 (574,4) Wy (2, 1,6) Ya (6,3, 7)
Vs (1,2,5) 10 (575,3) Wsy (3,275) Ys (6,4, 6)
21 | (7,6,6) x11 | (6,6,2) we | (4,3,4) ys | (7,5,5)
2o | (7,5,6) x12 | (6,7,1) wr | (3,4,3) yr | (7,5,4)
z3 | (8,6,5) x13 | (5,7,0) ws | (4,5,2) ys | (7,6,3)
24 (9, 7, 4) T14 (57 7, ].) W9 (4, 6, 1) Y9 (8, 7, 3)
Z5 (8, 7, 5) T15 (6, 8, 2) W10 (3, 5, 2) Y10 (7, 8, 2)
T (3, 3, 7) T16 (5, 7, 3) w11 (4, 6, 2) Y11 (7, 9, 3)
Ty | (3,2,8) T17 | (4,6,4) wiz | (3,6,3) yi2 | (7,8,4)
x3 | (4,3,9) x18 | (4,5,5) wig | (2,5,4) iz | (6,7,4)
T4 (5, 2,8) T19 (5,5,6) W14 (3,4, 5) Y14 (6,6, 5)
x5 | (4,1,7) xoo | (4,4,7) wis | (2,3,6) y15 | (6,6,6)

Theorem 3.1. [13] For m € N, m > 2, let {G1,Gs,--- ,G,,} be the collection of nontrivial
arbitrary connected graphs, and each G, has a terminal vertex v, 1, for 1 <t < m. Denote v as the

new vertex coming from identifying all of the terminal vertices. If G :== Amal{G1,Ga, - ,Gp, v}
then: . .
> dim(Gy) —m < dim(G) < ) dim(Gy) +m — 1. (5)
t=1 i=t

The definition of a near-distance basis of a graph is given in Definition 3.1, while in Lemma
3.1 we use the concept of a near-distance basis on the Buckminsterfullerene graph B.

Definition 3.1. Let W be a basis of Bgy and v € W. A basis W is called a near-distance basis of
v if for every u € N (v), there exists w € W such that d(u, w) < d(v,w).

Lemma 3.1. The graph By, has a near-distance basis of vy.

Proof. Putri et al. [9] have shown that dim(Bgy) = 3. We will provide a basis of By, containing
vy and near-distance to a vertex v;. Define W = {v;,ws, x13}. The metric representation of
every vertex of Bgy can be seen in the Table 1. Since the metric representation of all vertices are
different, then W is the resolving set of Bg,. Now, let us consider the vertex v;. Note that N (v;) =
{va, v5, w1 } and we have d(vq, x13) < d(v2,v;) and for u € {vs,w }, d(u, w3) < d(u,vy). Thus,
the set IV is a near-distance basis of v.

]

Next, we determine the metric dimension of Buckminsterfullerene-net H = Amal{ B, v|1 <
t <m,m > 2} in Theorem 3.2.
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Theorem 3.2. Let v € {vy1, V10,013, Ve4, 015} of Blg for 1 <t < mand m > 2. Let H =
Amal{By,v |1 <t <m,m > 2}. Then dim(H) = 2m.

Proof. Without loss of generality, let ¢ = v;; be the terminal vertices of H for 1 < ¢ < m and
m > 2. The vertex and edge sets of [ are defined in (3) and (4).

For the upper bound of the metric dimension of H, define W7 = {v; 2,219 | 1 <t < m}. For
1 <t < m, the metric representations of every vertex of H with respect to W are given in Table
2. Because all vertices have different metric representations, then W is the resolving set of H.
Therefore, dim(H) < 2m.

Next, we assume that dim(H) = 2m — 1, and W* is the resolving set of H on 2m — 1 vertices.
Consider the following cases.

(1) Letc ¢ W™
At least one of the subgraphs Béo, 1 <t < m, contains a maximum of one member of WW*.
Without loss of generality, assume that B}, is the subgraph that contains a maximum of one
member of TW*. Define W, as the resolving set of Bg,, where |IW;| < 1 and W; C W*.
Note that every (v,, vp)-path in H always goes through the point ¢, where v, € V(Bg,) and
vy, € V(H \ {Bg,})- Define a vertex set

Dg = {w1,67 w18, W1,9,W1,11, 21,3, L1,5,L1,6, L1,17, L1,18, w1,20},

where d(u, c) = 5, for all u € Dg. Since |Dg| = 10 > diam(Bg,) = 9, then |W;| > 2. This
contradicts the assumption that V]| < 1.

(2) Letc e W™,
At least one of the subgraphs Béo, 1 <t < m, contains a maximum of two members of W/ *.
Without loss of generality, assume that B, is the subgraph that contains a maximum of two
members of ;. Define W5 as the resolving set of BZ,, where | W| < 2 and W5 C W;.
Define the vertex set

D5 = {$2,4, X2.7,22,9, 22,10, L2.13, L2.14, 2,16, £2,19, Y2,1, y2,2}7

where d(v,c) = 5, for all v € Dj. Since ¢ € W} and |Ds| = 10 > diam(Bg,) = 9, then
|W5| > 3. This contradicts the assumption that |[IV;| < 2.

From these cases, we have that dim(H) > 2m. It is easy to show that dim(H) fulfills the bounds
in (5) in Theorem 3.1. ]

Graph H = Amal{Bl,,v | 1 <t < m,m > 2} and its metric dimension for m = 3 is given
in Figure 2.
4. Conclusion

In this paper, we have determined that the metric dimension of the Buckminsterfullerene-net

graph H = Amal{BL,,v |1 <t <m,m > 2} is 2m.
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Table 2. The representation of H = Amal{B,,v|1 <t < m,m > 2}

v r(v| W) v r(v| W)
c (1,5, ,1,5) 2a | (8,12, .8,12,7,6,8,12, - ,8,12),
N—— \ - / - J
2m 2(t—1) 2(m—t)
Vg2 (2767"'7276707572767”'7076) 2t,2 (8,12,"',8712,8,578,127"',8,12),
——— ——— ~ ~ ~ -
2(t—1) 2(m—t) 2(t—-1) 2(m—t)
Ut,3 (377a"'73a7a1747377a”'73a7> Zt,3 (9a137"'79713a974797137"'a9713)’
—— ——’ —_——— Ng — = Ng -
2(t—1) 2(m—t) 2(t—1) 2(m—t)
vea | (3,70 ,3,7,2,3,3,7,-++,3,7) 2a | (10,14, -+ ,10,14,8,5,10, 14, - - - , 10, 14),
———— —_——— N ~— D N -~
2(t—1) 2(m—t) 2(t—1) 2(m—t)
Ui s (2,6,---,2,6,2,4,2,6,---,2,6) 25 (9,13,---,9,13,7,6,9,13,--- ,9,13)
— — N ~~ 4 N ~~ d
2(t—1) 2(m—t) 2(t—1) 2(m—t)
Tt 1 (4,8,---,4,8,4,7,4,8,--- ,4,8) Tt 11 (7,11,--- ,7,11,6,2,7,11,--- | 7,11),
— ——— —— —— ~ —~ _ —~— _
2(t—1) 2(m—t) 2(t—1) 2(m—t)
T2 (4,8,---,4,8,4,6,4,8,--- ,4,8) Te12 (7,11,---,7,11,5,3,7,11,--- ,7,11),
—— —— ~ ~ ~ -
2(t—1) 2(m—t) 2(t—1) 2(m—t)
T3 (579a 75a9a5767579a”' 75a9) T3 (6a ]-07 7671()’474767107"' a6710)’
S —— —_——— < — = N -—
2(t—1) 2(m—t) 2(t—1) 2(m—t)
x4 | (6,10,---,6,10,6,5,6,10,---,6,10) Ty.14 (6,10,---,6,10,4,5,6,10,--- ,6,10),
—# W N ~~ 7 NS ~~ 7
2(t—1) 2(m—t) 2(t—1) 2(m—t)
Tip (5,9,---,5,9,5,4,5,9,--- ,59) Tt.15 (7,11,--- ,7,11,5,6,7,11,--- | 7,11),
— — N ~~ 4 N ~~ o
2(t—1) 2(m—t) 2(t—1 2(m—t
Tt 6 (5,9,--+,5,9,5,3,5,9,--- ,5,9) Tt.16 (6,10,---,6,10,4,7,6,10,--- ,6,10),
—— — N ~~ 4 ~~ d
2(t—1) 2(m—t) 2(t—1 2(m—t
xq | (6,10,---,6,10,6,2,6,10,---,6,10) Tt 17 (5,9,---,5,9,3,7,5,9,---,5,9),
~——— ——— ~— ~ ~ ~ ~
2(t—-1) 2(m—t) 2(t—1) 2(m—t)
g | (7,11,---,7,11,6,1,7,11,--- ,7,11) T4,18 (5,9,---,5,9),3,8,5,9,---,5,9)),
———_— —— — ————
2(t—1) 2(m—t) 2(t—1 2(m—t
x9 | (6,10,---,6,10,5,0,6,10,---,6,10) Tt.19 (6,10,---,6,10,4,9,6,10,--- ,6,10),
—# W N ~~ 7 A ~~ >
2(t—1) 2(m—t) 2(t—1) 2(m—t)
Tt10 (67 107 767 107571767107'“ 767 10) Tt,20 <5a97 7579757875797"' 7579)5
—_——— —— —_——— N —~ ) - ~— "
2(t—1) 2(m—t) 2(t—1) 2(m—t)
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v r(v| W) v r(v| W)
wey | (2,6,--+,2,6,2,6,2,6,---,2,6) w1 | (6,10,---,6,10,6,7,6,10,---,6,10),
N— N ~~ d A -~
2(t—1) 2(m—t) 2(t—1) 2(m—t)
weo | (3,7,--+,3,7,3,5,3,7,---,3,7) yo | (6,10,---,6,10,6,6,6,10,---,6,10),
——— —— b ~~ d N ~~ d
2(t—1) 2(m—t) 2(t—1) 2(m—t)
We,3 (478a"'7478a4747478a”'7478) Ye.3 (77117"'77a117775a7711a”'77711),
M—/ M—/ S - / (. ~ v
2(t—1) 2(m—t) 2(t—1) 2(m—t)
Wt 4 (377a"'73a7a3737377a”'7377) Yta (77117"'77a117774a7711a”'77711)’
—— —— ~~ ~~ o
2(t—1) 2(m—t) 2(t—1) 2(m—t)
Wy 5 (4,8,---,4,8,4,2,4,8,--- ,4,8) Yt 5 (7,11,---,7,11,7,3,7,11,--- | 7,11),
— — ~- ~ ~ .
2(t—1) 2(m—t) 2(t—1) 2(m—t)
wee | (5,9,--+,5,9,4,1,5,9,---,5,9) e | (8,12,---,8,12,8,3,8,12,---,8,12),
N——— N—— N ~~ d N ~~
2(t—1) 2(m—t) 2(t—1) 2(m—t)
wer | (4,8,--+,4,8,3,2,4,8,---,4,8) Yer | (8,12,---,8,12,7,2,8,12,---,8,12),
— — ~~ d A -~ d
2(t—1) 2(m—t) 2(t—1) 2(m—t)
Wt 8 (579a"'7579a4727579a”'7579) Yt.8 (87127"'78a127773a87127”'78712),
——— ——— N ~ o ~ ~ -
2(t—1) 2(m—t) 2(t—1) 2(m—t)
Wt,9 (579a"'7579a3737579a”'7579) Yt,9 (97137"'79a137774a9713a”'79713)’
——— —— ~~ ~~ -
2(t—1) 2(m—t) 2(t—1) 2(m—t)
Wt 10 <4a87 74787 27474787"' 74a8) Yt,10 (87127 787 1276747 87127 78712)’
— — ~~ N ~~ d
2(t—1) 2(m—t) 2(t—1) 2(m—t)
wer | (5,9,-+-,5,9,3,5,5,9,---.,5,9) Year | (8,12,---,8,12,6,5,8,12,---,8,12),
N——— N—— N ~~ d A ~~
2(t—1) 2(m—t) 2(t—1) 2(m—t)
weo | (4,8,-+-,4,8,2,6,4,8,---,4,8) Yeao | (8,12,---,8,12,6,6,8,12,---,8,12),
—— —— N ~~ d N ~~ d
2(t—1) 2(m—t) 2(t—1) 2(m—t)
wes | (3,7,--,3,7,1,6,3,7,---,3,7) Yeas | (7,11,-+- ) 7,11,5,7,7,11,--- | 7,11),
2(t—1) 2(m—t) 2(t—1) 2(m—t)
Wy, 14 (4,8,---,4,82,7,4,8,---,4,8) Yeaa | (7,11, 7,11,5,8,7,11,---,7,11),
—— —— N ~~ ~~ o
2(t—1) 2(m—t) 2(t—1) 2(m—t)
weas | (3,7,---,3,7,3,7,3,7,---,3,7) Yeas | (7,11,---,7,11,6,7,7,11,--- | 7,11),

2(t—1) 2(m—t)

-~

2(t—1)

-~

2(m—t)
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On metric dimensi

l{BéO,v|1§t§3 and W, Vo, Tro | 1 <E<3

Figure 2. Ama
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