

INDONESIAN JOURNAL OF COMBINATORICS

A note on vertex irregular total labeling of trees

Faisal Susanto^a, Rinovia Simanjuntak^{b,c}, Edy Tri Baskoro^{b,c}

^aDoctoral Program of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia ^bCombinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia ^cCenter for Research Collaboration on Graph Theory and Combinatorics, Indonesia

faisalsusanto16@gmail.com, rino@itb.ac.id, ebaskoro@itb.ac.id

Abstract

The total vertex irregularity strength of a graph G = (V, E) is the minimum integer k so that there is a mapping from $V \cup E$ to the set $\{1, 2, ..., k\}$ for which the vertex-weights (i.e., the sum of labels of a vertex together with the edges incident to it) are all distinct. In this note, we present a new sufficient condition for a tree to have total vertex irregularity strength $\lceil (n_1 + 1)/2 \rceil$, where n_1 is the number of vertices of degree one in the tree.

Keywords: vertex irregular total k-labeling, total vertex irregularity strength, trees Mathematics Subject Classification : 05C78

1. Introduction

Here, all graphs considered are only finite and undirected containing no loops nor multiple edges. Let G be a graph with vertex set V and edge set E. The degree of a vertex x is denoted by deg(x). The maximum and minimum degree of vertices of G are denoted by Δ and δ , respectively.

In 2007, Bača et al. [1] introduced a vertex irregular total labeling of a graph as an extension of an irregular labeling defined by Chartrand et al. [2]. For a positive integer k, a total k-labeling $\varphi : V \cup E \rightarrow \{1, 2, ..., k\}$ of a graph G is said to be a vertex irregular total k-labeling of G if $wt(x) \neq wt(y)$ for any two distinct vertices x, y where the weight of a vertex x is defined

Received: 23 December 2022, Revised: 14 May 2023, Accepted: 11 June 2023.

by $wt(x) = \varphi(x) + \sum_{xz \in E} \varphi(xz)$. The least integer k so that G admits a vertex irregular total k-labeling is called the *total vertex irregularity strength* of G and denoted by tvs(G).

In [4], Nurdin et al. gave a general lower bound for the total vertex irregularity strength of an arbitrary tree T with maximum degree Δ :

$$\operatorname{tvs}(T) \geqslant \max\{t_i : i = 1, 2, \dots, \Delta\},\tag{1}$$

where $t_i = \lceil (1 + \sum_{j=1}^{i} n_j)/(i+1) \rceil$, and n_j denotes the number of vertices of degree j. In the same paper, they proposed a conjecture stating that the total vertex irregularity strength of any tree is determined only by the number of vertices of degree one, two, and three in the tree.

Conjecture 1. [4] For every tree T with maximum degree Δ , $tvs(T) = max\{t_1, t_2, t_3\}$.

This conjecture has been verified to be true for trees without vertices of degree two [4], irregular subdivision of trees [6], and trees with maximum degree four and five [7, 8]. In [5], Simanjuntak, Susilawati and Baskoro studied the total vertex irregularity strength of trees with many vertices of degree two and provided some sufficient conditions for trees to have total vertex irregularity strength t_1 , t_2 or t_3 . Specifically, they proved the following theorem.

Theorem 1.1. [5] Let T be a tree. If $n_2 \leq \frac{n_1+1}{2}$ and $n_2 = n_3 > 0$ then $tvs(T) = t_1$.

In this note, we present another sufficient condition for a tree T to have $tvs(T) = t_1$. In this new condition, we do not require n_2 and n_3 in T to be equal. In addition, we apply a slightly different algorithm to construct a vertex irregular total t_1 -labeling of T.

The following property, found in [3], plays an important role in determining the total vertex irregularity strength of a tree, that is, for every tree T with maximum degree Δ ,

$$n_1 = 2 + \sum_{i=3}^{\Delta} (i-2)n_i.$$
⁽²⁾

Consequently, for $i = 4, 5, \ldots, \Delta$,

$$n_i = \frac{n_1 - n_3 - 2 - \sum_{j=4, j \neq i}^{\Delta} (j-2)n_j}{i-2} < t_1.$$
(3)

2. Main results

Let us begin with the following lemma which reduces the number of variables appeared in (1). Lemma 2.1. For every tree T with maximum degree Δ , $\max\{t_i : i = 1, 2, ..., \Delta\} = \max\{t_1, t_2, t_3\}$. Proof. Consider $t_i - t_j$ for $1 \le i < j \le \Delta$ as follows.

$$\begin{split} t_i - t_j &= \left\lceil \frac{1 + \sum_{k=1}^i n_k}{i+1} \right\rceil - \left\lceil \frac{1 + \sum_{k=1}^j n_k}{j+1} \right\rceil \\ &= \left\lceil \frac{1 + n_1 + n_2 + \sum_{k=3}^i n_k}{i+1} \right\rceil - \left\lceil \frac{1 + n_1 + n_2 + \sum_{k=3}^j n_k}{j+1} \right\rceil \\ &= \left\lceil \frac{(j+1)(1 + n_1 + n_2 + \sum_{k=3}^i n_k)}{(i+1)(j+1)} \right\rceil - \left\lceil \frac{(i+1)(1 + n_1 + n_2 + \sum_{k=3}^j n_k)}{(i+1)(j+1)} \right\rceil. \end{split}$$

www.ijc.or.id

By substituting (2) to the above equation we get

$$\begin{split} t_i - t_j &= \left\lceil \frac{(j+1)(3+n_2+\sum_{k=3}^{\Delta}(k-2)n_k+\sum_{k=3}^{i}n_k)}{(i+1)(j+1)} \right\rceil \\ &- \left\lceil \frac{(i+1)(3+n_2+\sum_{k=3}^{\Delta}(k-2)n_k+\sum_{k=3}^{j}n_k)}{(i+1)(j+1)} \right\rceil \\ &= \left\lceil \frac{(j+1)(3+n_2+\sum_{k=3}^{i}(k-1)n_k+\sum_{k=i+1}^{j}(k-2)n_k+\sum_{k=j+1}^{\Delta}(k-2)n_k)}{(i+1)(j+1)} \right\rceil \\ &- \left\lceil \frac{(i+1)(3+n_2+\sum_{k=3}^{i}(k-1)n_k+\sum_{k=i+1}^{j}(k-1)n_k+\sum_{k=j+1}^{\Delta}(k-2)n_k)}{(i+1)(j+1)} \right\rceil. \end{split}$$

By putting $q_1 = 3 + n_2 + \sum_{k=3}^{i} (k-1)n_k + \sum_{k=j+1}^{\Delta} (k-2)n_k$ and $q_2 = \sum_{k=i+1}^{j} (k-1)n_k$, the above expression can be written as

$$t_i - t_j = \left\lceil \frac{(j+1)\left(q_1 + q_2 - \sum_{k=i+1}^j n_k\right)}{(i+1)(j+1)} \right\rceil - \left\lceil \frac{(i+1)(q_1 + q_2)}{(i+1)(j+1)} \right\rceil.$$
 (4)

Next we shall show that there is some $i, i \in \{1, 2, 3\}$, so that $t_i \ge t_j$ for $1 \le j \le \Delta$. The case $1 \le j \le 3$ is obvious. Suppose j = 4. If $t_2 \ge t_4$ then we are done. Assume now $t_2 < t_4$. We will show that $t_3 \ge t_4$. From (4) we obtain

$$t_2 - t_4 = \left\lceil \frac{5\left(q_1 + q_2 - n_3 - n_4\right)}{15} \right\rceil - \left\lceil \frac{3(q_1 + q_2)}{15} \right\rceil < 0,$$

so

$$5(q_1 + q_2 - n_3 - n_4) - 3(q_1 + q_2) < 0 \quad \Leftrightarrow \quad n_3 > 6 + 2n_2 + n_4 + 2\sum_{k=5}^{\Delta} (k-2)n_k.$$

This implies that

$$5(q_1 + q_2 - n_4) - 4(q_1 + q_2) = 3 + n_2 + 2n_3 + \sum_{k=5}^{\Delta} (k-2)n_k + 3n_4 - 5n_4$$

>3 + n_2 + 2 $\left(6 + 2n_2 + n_4 + 2\sum_{k=5}^{\Delta} (k-2)n_k \right)$
+ $\sum_{k=5}^{\Delta} (k-2)n_k - 2n_4 = 15 + 5n_2 + 5\sum_{k=5}^{\Delta} (k-2)n_k > 0.$

Combining with (4), we get $t_3 \ge t_4$.

www.ijc.or.id

For the case $5 \leq j \leq \Delta$ one gets

$$(j+1)\left(q_1+q_2-\sum_{k=4}^j n_k\right)-4(q_1+q_2)=(j-3)q_1+(j-3)\sum_{k=4}^j (k-1)n_k-(j+1)\sum_{k=4}^j n_k$$
$$=(j-3)q_1+\sum_{k=4}^j ((j-3)(k-2)-4)n_k>0.$$

Combining with (4), we have $t_3 \ge t_i$.

Lemma 2.2. For every tree *T* of order at least three with $3n_3 - n_1 - 1 \le n_2 \le \frac{n_1+1}{2}$ or $n_2 \le 3n_3 - n_1 - 2 \le n_1 - n_3 + 1$, we have that $t_1 = \max\{t_1, t_2, t_3\}$.

Proof. First, suppose $3n_3 - n_1 - 1 \le n_2 \le \frac{n_1+1}{2}$. As $n_2 \le \frac{n_1+1}{2}$ we get

$$t_2 = \left\lceil \frac{n_1 + n_2 + 1}{3} \right\rceil = \left\lceil \frac{2n_1 + 2n_2 + 2}{6} \right\rceil \leqslant \left\lceil \frac{2n_1 + 2(\frac{n_1 + 1}{2}) + 2}{6} \right\rceil = t_1.$$

Furthermore, since $n_2 \ge 3n_3 - n_1 - 1$ we have $3n_3 \le n_1 + n_2 + 1$. So

$$t_3 = \left\lceil \frac{n_1 + n_2 + n_3 + 1}{4} \right\rceil \leqslant \left\lceil \frac{3n_1 + 3n_2 + n_1 + n_2 + 1 + 3}{12} \right\rceil = t_2 \leqslant t_1.$$

Therefore $t_1 = \max\{t_1, t_2, t_3\}.$

Now let $n_2 \leq 3n_3 - n_1 - 2 \leq n_1 - n_3 + 1$. As $n_2 \leq n_1 - n_3 + 1$ we obtain $n_3 \leq n_1 - n_2 + 1$. Therefore

$$t_3 = \left\lceil \frac{n_1 + n_2 + n_3 + 1}{4} \right\rceil \leqslant \left\lceil \frac{n_1 + n_2 + n_1 - n_2 + 1 + 1}{4} \right\rceil = t_1.$$

Next, since $n_2 \leqslant 3n_3 - n_1 - 2$ we get

$$t_2 = \left\lceil \frac{n_1 + n_2 + 1}{3} \right\rceil \leqslant \left\lceil \frac{4n_1 + 3n_2 + 3n_3 - n_1 - 2 + 4}{12} \right\rceil \leqslant \left\lceil \frac{3n_1 + 3n_2 + 3n_3 + 3}{12} \right\rceil = t_3 \leqslant t_1.$$

Thus $t_1 = \max\{t_1, t_2, t_3\}.$

Lemma 2.3. For every tree T of maximum degree $\Delta \ge 2$ with $3n_3 - n_1 - 1 \le n_2 \le \frac{n_1+1}{2}$ or $n_2 \le 3n_3 - n_1 - 2 \le n_1 - n_3 + 1$, we have that $n_i \le t_1$ for $i = 2, 3, \ldots, \Delta$.

Proof. According to (3), it remains to show that $n_i \leq t_1$ for i = 2, 3. Let us first consider $3n_3 - n_1 - 1 \leq n_2 \leq \frac{n_1+1}{2}$. Then $n_2 \leq \frac{n_1+1}{2} \leq t_1$, and since $3n_3 - n_1 - 1 \leq \frac{n_1+1}{2}$ we have $n_3 \leq \frac{n_1+1}{2} \leq t_1$.

Now let $n_2 \leq 3n_3 - n_1 - 2 \leq n_1 - n_3 + 1$. As $3n_3 - n_1 - 2 \leq n_1 - n_3 + 1$ we get $n_3 \leq \frac{n_1+1}{2} + \frac{1}{4}$. However, n_3 is an integer and so $n_3 \leq \frac{n_1+1}{2} \leq t_1$. Furthermore, $n_2 \leq 3n_3 - n_1 - 2 \leq 3(\frac{n_1+1}{2}) - n_1 - 2 = \frac{n_1-1}{2} < t_1$.

Let T be a tree. A vertex in T is called a *pendant vertex* if it has degree one. A *pendant edge* is an edge incident to a pendant vertex. An *exterior vertex* is a vertex adjacent to a pendant vertex. Every edge which is not pendant edge is called an *interior edge*. In the following theorem, we give a sufficient condition for a tree T with large number of exterior vertices to have $tvs(T) = t_1$.

Theorem 2.1. Suppose T be a tree of order at least three with $3n_3 - n_1 - 1 \le n_2 \le \frac{n_1+1}{2}$ or $n_2 \le 3n_3 - n_1 - 2 \le n_1 - n_3 + 1$, and $n_2^e \ge 0$. If T contains n_2^e exterior vertices of degree two and contains at least $t_1 - 2n_2^e - 1$ exterior vertices of degree at least three then $tvs(T) = t_1$.

Proof. It follows from (1), and Lemmas 2.1 and 2.2 that $tvs(T) \ge t_1$. To prove the equality, we provide a vertex irregular total t_1 -labeling of T. Let us define a total labeling φ on vertices and edges of T using the following steps.

- 1. Let $V_{Ex} = \{v_1, v_2, \dots, v_s\}$ be the set of s exterior vertices of T so that for every i < j, the following properties hold:
 - (a) $\deg(v_i) \leq \deg(v_j)$.
 - (b) If $\deg(v_i) = \deg(v_j)$ then $|E(v_i)| \ge |E(v_j)|$, where $E(v_i)$ denotes the set of pendant vertices adjacent to v_i .
- 2. For $j = 1, 2, ..., |E_P(v_i)|$ denote by v_{ij} the *j*th pendant vertex adjacent to the exterior vertex v_i . Denote by e_{ij} a pendant edge incident to v_{ij} . We then set $t := \max\{|E_P(v_i)| : i = 1, 2, ..., s\}$. For j = 1, 2, ..., t let $V_P^j = \{v_{ij} : i = 1, 2, ..., s \text{ and } |E_P(v_i)| \ge j\}$. Denote by V_P the ordered set of union $\bigcup_{j=1}^t V_P^j$ where the order follows the original order in each V_P^j . Let also denote E_P as an ordered set of pendant edges so that e_{ij} is the *k*th element in E_P if and only if v_{ij} is the *k*th element in V_P .
- 3. Assign by 1 the first t_1 pendant vertices in V_P and by $2, 3, \ldots, n_1 t_1 + 1$, respectively, the remaining pendant vertices in V_P . Then, assign by $1, 2, \ldots, t_1$, respectively, the first t_1 pendant edges in E_P and by t_1 the remaining pendant edges in E_P .
- 4. Assign by t_1 all interior edges of T.
- 5. Denote by x_1, x_2, \ldots, x_N , $N = |V| n_1$, all the non-pendant vertices of T so that $\omega(x_i) \leq \omega(x_{i+1})$ for each i, where $\omega(x) := \sum_{xy \in E} \varphi(xy)$ denotes the temporary weight of x. We then define recursively:

$$\varphi(x_1) = \max\{1, n_1 + 2 - \omega(x_1)\}, \quad wt(x_1) = \varphi(x_1) + \omega(x_1), \\ \varphi(x_i) = \max\{1, wt(x_{i-1}) + 1 - \omega(x_i)\} \quad \text{for } i = 2, 3, \dots, N.$$

We shall show that φ is a vertex irregular total t_1 -labeling of T. It follows from the construction above that the weights of pendant vertices constitute the consecutive integers from 2 up to $n_1 + 1$, and for the weights of non-pendant vertices we have $n_1 + 2 \leq wt(x_1) < wt(x_2) < \cdots < wt(x_N)$. So all vertices of T have distinct weights.

It remains to prove that the largest label being used is t_1 . It is easy to see from steps 3 dan 4 that all the pendant vertices and all the edges of T get labels at most t_1 . Now, we show that every non-pendant vertex receive labels at most t_1 , that is $\varphi(x_i) \leq t_1$ for i = 1, 2, ..., N.

Since T contains at least $t_1 - n_2^e - 1$ exterior vertices, one can verify that every vertex of degree $\partial \ge 2$ has temporary weight at least $(\partial - 1)t_1 + 1$, and no two distinct vertices with distinct degrees

have identical temporary weights. Furthermore, if two vertices x and y have identical temporary weights then $\deg(x) = \deg(y) = \partial$ and $\omega(x) = \omega(y) = t_1 \partial$, and by Lemma 2.3, $n_i \leq t_1$ for $i = 2, 3, \ldots, \Delta$, so there are at most t_1 such vertices. Therefore, the maximum label contributing to the corresponding final weights must be at most t_1 . Hence φ is a vertex irregular total t_1 -labeling of T, and we are done.

An example of vertex irregular total labeling of a tree is illustrated in Figure 1.

Figure 1: Example of a vertex irregular total labeling of a tree T. Top, **Step 1 and 2**: Denoting vertices in V_{Ex} , vertices and in $V_P \cup E_P$. Bottom, **Step 3, 4 and 5**: Labeling vertices and edges in $V_P \cup E$, and recursively labeling vertices in $V \setminus V_P$.

3. Conclusion

In this note, we studied the total vertex irregularity strength of trees with sufficiently large number of exterior vertices. In particular, we presented a new sufficient condition for a tree T containing n_2^e exterior vertices of degree two and containing at least $t_1 - 2n_2^e - 1$ exterior vertices of degree at least three to have $tvs(T) = t_1$, which strengthens Conjecture 1. However, finding the necessary and sufficient conditions for which $tvs(T) = t_1$ is still an unsolved problem. We therefore propose the following open problem.

Open Problem 1. Find the necessary and sufficient conditions for a tree T to have $tvs(T) = t_1$.

Acknowledgement

This research has been supported by the Indonesian Ministry of Education, Culture, Research and Technology under the grant "Penelitian Disertasi Doktor", and by Institut Teknologi Bandung under the grant of "Riset Kolaborasi Universitas Top Dunia". The first author also thanks the Excellent Scholarship Program from the Indonesian Ministry of Education, Culture, Research, and Technology.

References

- [1] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, *Discrete Math.*, **307** (2007), 1378–1388.
- [2] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, *Congr. Numer.*, **64** (1988), 197–210.
- [3] N. Hartsfield and G. Ringel, Pearls in Graph Theory: A Comprehensive Introduction, Academic Press, INC, San Diego, (1990).
- [4] Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On the total vertex irregularity strength of trees, *Discrete Math.*, **310** (2010), 3043–3048.
- [5] R. Simanjuntak, Susilawati and E.T. Baskoro, Total vertex irregularity strength for trees with many vertices of degree two, *Electron. J. Graph Theory Appl. (EJGTA)*, **8** (2020), 415–421.
- [6] Susilawati, E.T. Baskoro, R. Simanjuntak and J. Ryan, On the vertex irregular total labeling for subdivision of trees, *Australas. J. Combin.*, **71** (2018), 293–302.
- [7] Susilawati, E.T. Baskoro and R. Simanjuntak, Total vertex irregularity strength of trees with maximum degree four, *AIP Conference Proceedings*, **1707** (2016), 020022.
- [8] Susilawati, E.T. Baskoro and R. Simanjuntak, Total vertex irregularity strength of trees with maximum degree five, *Electron. J. Graph Theory Appl. (EJGTA)*, **6** (2018), 250–257.