

INDONESIAN JOURNAL OF COMBINATORICS

On graphs associated to topological spaces

Haval M. Mohammed Salih

Department of Mathematics, Faculty of Science, Soran University, Kawa St. Soran, Iraq

haval.mohammed@soran.edu.iq

Abstract

Let X be a set and T be a topology on X. A new type of graph on P(X), namely the closure graph of T is introduced. The closure graph denoted by Γ^c , as an undirected simple graph whose vertex set is P(X) and for distinct $A, B \in P(X)$, there is an edge e = AB if $\overline{A} \cap \overline{B} \subseteq \overline{A \cap B}$. In this paper, the closure graph is shown as a connected graph with diameter bounded by two. Also, the girth of the closure graph Γ^c of T is three if X contains more than one point. Also, several graph properties are studied.

Keywords: Closure, Connected graph, Hamiltonian graph, discrete space Mathematics Subject Classification : Primary: 16S34; Secondary: 22B10.

1. Introduction

Recently, a lot of graph structure defined on groups and rings which can be found in [1, 2, 9, 4]. A lot of work has been done based on these new definitions. It becomes a new branch in abstract algebra and graph theory. The distance between two distinct vertices A and B in G, denoted by d(A, B), is the length of the shortest path connecting them, if such a path exists; otherwise, we put $d(A, B) = \infty$. The diameter of a graph G is defined by $diam(G) = Sup\{d(A, B) :$ A and B are distinct vertices of $G\}$. The girth of G is the length of the shortest cycle in G, denoted by g(G) ($gr(G) := \infty$ if G has no cycles). A graph G is connected if there is a path between any two distinct vertices and it is complete if it is connected with diam(G) = 1 and it will be denoted by K_n . Two graphs G and H are isomorphic, denoted by $G \cong H$, if there is a bijection $f: V(G) \to V(H)$ such that xy is an edge in G if and only if f(x)f(y) is an edge in H [8, 9].

Received: 10 January 2023, Revised: 11 June 2023, Accepted: 30 June 2023.

Throughout this paper, we will assume that (X, T) is a topological space (for short X) and let $A \subseteq X$. The interior of A is defined by $A^o = \bigcup \{G \subseteq A \mid G \text{ is an open set in } X\}$ and the closure of A is defined by $\overline{A} = \bigcap \{F \text{ is closed set } in X \mid A \subseteq F\}$. Also, the boundary of A is defined by $b(A) = \overline{A} \bigcap \overline{A^c}$.

Throughout this paper we assume that X is a finite set unless otherwise stated. We define the graph structure on a topological space. A new type of graph on P(X), namely the closure graph of T is defined. The closure graph is denoted by Γ^c where the vertex set is P(X). In this graph, for $A \neq B$ in P(X), e = AB is an edge if $\overline{A} \cap \overline{B} \subseteq \overline{A \cap B}$. Our main goal of this work is to study some properties of a new type of graph by using closure properties.

The following results are well known in topology and graph theory.

Lemma 1.1. [5] Let A and B be subsets of X. Then

- 1. $A^o = \bar{A}^{c^c}$.
- 2. If A is an open set, then $A \cap \overline{B} \subseteq \overline{A \cap B}$.
- 3. $b(A) = \emptyset$ if and only if A is open and closed.

Corollary 1.1. (*Dirac, 1952*) [8]. If G is a simple graph with at least three vertices, and if the degree of each vertex greater than or equal to half number of vertices, then G is Hamiltonian.

Theorem 1.1. [8]. A graph G is planar if and only if it does not contain a subgraph homeomorphic to $K_{3,3}$ or K_5 .

Theorem 1.2. [5] If A and B are subsets of X, then the following are equivalent:

1. $\overline{A} \cap \overline{B} = \overline{A \cap B}$ 2. $b(A) \cap b(B) \subseteq b(A \cap B)$.

2. Some Properties of The Closure Graph

In this section, a new kind of graph is introduced which is called the closure graph of the topology T on a finite set X and denoted by Γ^c . Furthermore, some results related to the closure graph are given.

Definition 2.1. Assume that X is a set and T be a topology on X. A closure graph of T denoted by Γ^c whose vertex set is P(X) and for distinct A and B in P(X), there is an edge e = AB if $\overline{A \cap B} \subseteq \overline{A \cap B}$.

Example 2.1. Let $X = \{a, b, c\}$ and $T = \{\phi, \{a\}, \{b, c\}, X\}$. The closure graph of T is

Figure 1. The closure graph of T

Proposition 2.1. Let A and B be subsets of X and Γ^c be the closure graph of T. Then

- 1. If $A \subseteq B$, then A and B are adjacent.
- 2. Two closed sets are adjacent.
- 3. If A and B are finite sets of a Huasdorff space, then they are adjacent.
- 4. If A and B are separated sets and one of them is closed, then they are adjacent.

Proof. 1. If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$. Now $\overline{A} \cap \overline{B} = \overline{A} = \overline{A \cap B}$. Therefore A is adjacent to B.

- 2. The proof is clear.
- 3. Every finite set in X is compact. Since X is a Huasdorff space, then A and B in X are closed sets. The rest follows from 4.
- 4. Let A be closed set and $\overline{A} \cap \overline{B} = A \cap \overline{B} = \emptyset \subseteq \overline{A \cap B}$. So A and B are adjacent.

Remark 2.1. The converse of 1, 2, 3 and 4 in Proposition 2.1 are not true according to Example 2.1. It is clear that $\{a, c\}$ and $\{b, c\}$ are adjacent, but they are different. Also, $\{a\}$ and $\{c\}$ are adjacent. However, $\{c\}$ is not closed. Furthermore X is not Hausdorff space. Since $\{b, c\}$ is closed set and it is adjacent to $\{b\}$. However, they are not separated.

Proposition 2.2. Let A be a subset of X and Γ^c be the closure graph of T. Then $b(A) = \emptyset$ iff A is adjacent to all other vertices in Γ^c .

Proof. Let $A \subseteq X$. Since $b(A) = \emptyset$, then A is closed and open set. Then $\overline{A} \cap \overline{B} = A \cap \overline{B} \subseteq \overline{A \cap B}$, the last inequality follows from Lemma 1.1. Hence A is adjacent to all other vertices. Conversely, let H is adjacent to all other vertices, that is $\overline{H} \cap \overline{B} \subseteq \overline{H \cap B}$ for all $B \subseteq X$. Now, $\emptyset = \overline{\emptyset} =$

 $\overline{H \cap H^c} = \overline{H} \cap \overline{H^c}$. So \overline{H} and $\overline{H^c}$ are disjoint. Also, we have $X = \overline{X} = \overline{H \cup H^c} = \overline{H} \cup \overline{H^c}$. Therefore,

$$\overline{H^c} = \overline{H}^c \tag{1}$$

Now, $H^c \subseteq \overline{H^c} = \overline{H}^c$, the equality follows from (1). This implies that $\overline{H} \subseteq H$. Thus H is closed set. By using Equation (1), we obtain $\overline{H^c}^c = \overline{H}$, so $H^o = \overline{H} = H$. Thus, H is open and $b(H) = \emptyset.$

Corollary 2.1. Let Γ^c be the closure graph of X and $b(A) = \emptyset$ where $A \subseteq X$, then $\deg(A) =$ $2^{|X|-1}$.

Proof. The proof follows from Proposition 2.2.

Remark 2.2. 1. If the closure graph of T is K_2 , then (X, T) is indiscrete space. 2. If X contains one point, then the closure graph of T is K_2 .

The converse of Remark 2.2, part 1, is not true according to the following example.

Example 2.2. Assume that $X = \{a, b\}$ and $T = \{\emptyset, X\}$. The closure graph of T is the following:

Figure 2. The closure graph of T

Proposition 2.3. The closure graph of T is complete iff (X, T) is discrete space.

Proof. If the closure graph of T is complete, then for each subset A of X is adjacent with other vertex in Γ^c . By Proposition 2.2, we obtain $b(A) = \emptyset$. So A is open and closed set. Since A is arbitrary set and hence X is discrete space.

Conversely, it is straightforward.

As a consequence of Proposition 2.3, we get the following.

Corollary 2.2. *If the closure graph is complete, then it is disconnected space.*

Proof. The proof follows from Proposition 2.3.

Theorem 2.1. Let A and B be subsets of X. Then, the following statements are equivalent:

49

- 1. *The closure graph of T is complete.*
- 2. $\overline{A} \cap \overline{B} = \overline{A \cap B}$ for all subsets A and B of X.
- 3. $A^o \cup B^o = (A \cup B)^o$ for all subsets A and B of X.
- 4. (X,T) is discrete.
- 5. $b(A) \cap b(B) \subseteq b(A \cap B)$ for all subsets A and B of X.

Proof. The proof follows form Proposition 2.3 and Theorem 1.2.

Theorem 2.2. If X contains more than one point, then the closure graph Γ^c is a connected with $diam(\Gamma^c) \leq 2, rad(\Gamma^c) = 1$ and $g(\Gamma^c) = 3$.

Proof. Suppose that A and B are two distinct vertices of Γ^c . If A is adjacent to B, thus d(A, B) = 1. If A is not adjacent to B, then the vertices A and B are adjacent with X; hence d(A, B) = 2. This means that Γ^c is connected with diameter at most two and radius one. It well known that there exist a vertex A such that $X \neq A$ and $A \neq \emptyset$. These vertices produce a cycle of order three in Γ^c , hence the girth of Γ^c is three. The proof is complete.

Proposition 2.4. *The closure graph of T is Hamiltonian.*

Proof. If X contains n elements, then there are 2^n subsets of X. Let A be a subset of X, by property 2 of Proposition 2.3, A is adjacent with all super sets of A and ϕ . There are $\frac{2^n}{2}$ super sets of A. So $deg(A) \ge \frac{2^n}{2}$. The rest follows from Corollary 1.2.

Lemma 2.1. If there is at least five clopen sets in X, then the closure graph of T is non-planar.

Proof. The proof is clear.

Proposition 2.5. If $f: X \to Y$ is a homeomorphism, then their closure graphs are isomorphic.

Proof. The proof is clear.

The converse of Proposition 2.5 is not true for the following example.

Example 2.3. Assume that $Y = \{a, b\}$, $T = \{\emptyset, Y\}$ and $\partial = \{\emptyset, \{a\}, Y\}$. The closure graphs of T and ∂ are isomorphic.

Remark 2.3. If (Y, T_Y) is a subspace of X, then it does not imply that the closure graph of T_Y is a subgraph of the closure graph of T.

Example 2.4. Let $X = \{a, b, c, d\}$ and $T = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}, X\}$. Let $Y = \{b, c, d\}$ and $T_Y = \{\emptyset, \{b, c\}, Y\}$. The closure graph of T_Y is not a subgraph of the closure graph of T.

Someone can consider the infinite case as follows:

Example 2.5. Let us consider the co-finite topology on infinite set X. We need to consider the following:

If A and B are finite subsets of X, then they are adjacent.

If A is an infinite set and B is a finite, then they are adjacent.

If A and B are infinite subsets of X, then either $A \cap B$ is finite or infinite. That is they are not adjacent or they are adjacent. It gives infinite closure graph.

3. Conclusion

In this study, we introduced a new graph called the closure graph. The graph is found for a topology on a finite set. Also, we showed that there is a relationship between properties of this graph and topological spaces. Furthermore, some properties of this graph were determined such as planarity, connectedness and so on.

Acknowledgement

The author would like thanks to the referees for the comments and suggestions which improved the paper.

References

- [1] A. Erfanian and B. Tolue, Conjugate graphs of finite groups, *Discrete Mathematics, Algorithms and Applications*, **4**(2) (2012), 1250035.
- [2] H.M.M. Salih and S.M.S. Omer, Structure of intersection graphs, *Indonesian Journal of Combinatorics*, **5**(2) (2021), 102–109.
- [3] H.M.M. Salih, A.A. Jund, Prime ideal graphs of commutative rings, *Indonesian Journal of Combinatorics*, **6**(1) (2022) 42–49.
- [4] H.M.M. Salih, Prime ideal graphs of commutative rings, *Indonesian Journal of Combinatorics*, **6**(2) (2022) 97–104.
- [5] S.-M. Jung, Interiors and closures of sets and applications. Int. J. Pure Math, 3 (2019) 41-45.
- [6] S. Akbari and A. Mohammadian, On zero-divisor graphs of finite rings, *Journal of Algebra* **314**(1) (2007), 168–184.
- [7] S. Akbari and A. Mohammadian, Zero-divisor graphs of non-commutative rings, *Journal of Algebra* **296**(2) (2006), 462–479.
- [8] R.J. Wilson, Introduction to graph theory, (Pearson Education India, 1979).
- [9] M. Ye and T. Wu, Co-maximal ideal graphs of commutative rings, *Journal of algebra and its applications*, **11**(6), (2012) 1250114.