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Abstract

In this paper, with any atomic domain R which admits at least two maximal ideals, we associate
an undirected graph denoted by MGI(R) whose vertex set is I(R) = {Rπ | π ∈ Irr(R)\J(R)}
(where Irr(R) is the set of all irreducible elements of R and J(R) is the Jacobson radical of R)
and distinct Rπ,Rπ′ ∈ I(R) are adjacent if and only if Rπ + Rπ′ ⊆ M for some maximal ideal
M of R. We call MGI(R) as the maximal graph of R. We denote the set of all maximal ideals
of R by Max(R). In this paper, some necessary (respectively, sufficient) conditions on Max(R)
are provided such that MGI(R) is connected. Also, in this paper, in some cases, a necessary and
sufficient condition is determined so that MGI(R) is connected.
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1. Introduction

The rings considered in this paper are commutative with identity. We use R to denote a ring.
The graphs considered here are undirected and simple. The vertex set (respectively, the edge set)
of a graph G is denoted by V (G) (respectively, E(G)). The set of all prime ideals (respectively,
the set of all maximal ideals) of R is denoted by Spec(R) (respectively, Max(R)) and the notation
J(R) is used to denote the Jacobson radical of R. The set of all units (respectively, the set of all
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non-units) in R is denoted in this paper by U(R) (respectively, NU(R)). We now give a brief
motivation for the problem considered in this paper. In [14], Sharma and Bhatwadekar associated
a graph G with vertices as elements of R and distinct vertices a and b are adjacent if and only if
Ra+Rb = R. It was proved in [14] that G is finitely colourable if and only if R is a finite ring. In
[10], Maimani et al. called the graph studied in [14] as the comaximal graph ofR and they denoted
it by Γ(R). The authors of [10] also studied the subgraph of Γ(R) induced byNU(R) (respectively,
NU(R)\J(R)). Several researchers have studied the comaximal graph of a commutative ring (for
example, [4], [11], [13], [15]).

For a simple graph G = (V,E), recall that the complement of G denoted by Gc is defined by
taking V (Gc) = V (G) and different u, v ∈ V (G) are adjacent in Gc if and only if they are not
adjacent in G [2, Definition 1.2.13].

In [5], Gaur and Sharma associated a graph G with vertices as elements of R and distinct
a, b ∈ R are adjacent if and only if Ra+Rb ⊆M for some maximal ideal M of R and they called
the graph studied by them as the maximal graph of R. Several interesting results on the coloring of
G were proved in [5]. Observe that the maximal graph of R is the complement of the comaximal
graph of R. Several authors have studied the maximal graph of a commutative ring (for example,
[9], [16]).

Recall that an integral domain R is said to be atomic if any non-zero non-unit of R can be
expressed as a product of a finite number of irreducible elements of R [7, page 321]. We denote
the set of all irreducible elements ofR by Irr(R). It is well-known that any domain which satisfies
the ascending chain condition (a.c.c.) on principal ideals is atomic. Hence, any Noetherian domain
is atomic. As usual, we denote the cardinality of a set A by |A|.

For an atomic domain R which admits at least two maximal ideals, in this paper, the collection
{Rπ | π ∈ Irr(R)\J(R)} is denoted by I(R). With R, we associate an undirected graph denoted
by MGI(R) such that V (MGI(R)) = I(R) and distinct Rπ,Rπ′ ∈ I(R) are adjacent if and
only if Rπ + Rπ′ ⊆ M for some M ∈ Max(R). In Section 2, some necessary conditions on
Max(R) are provided such that MGI(R) is connected. In Section 3, some sufficient conditions on
Max(R) are given so that MGI(R) is connected. In some special cases, a necessary and sufficient
condition is determined such that MGI(R) is connected. In Section 4, some atomic domains R are
provided such that MGI(R) is connected. Several examples are provided to illustrate the results
proved in this paper. In Section 5, some problems are mentioned for which the author is not
aware of their solutions. In this paper, (MGI(R))c is denoted by CGI(R). It is useful to note
that V (CGI(R)) = I(R) and distinct Rπ,Rπ′ ∈ I(R) are adjacent in CGI(R) if and only if
Rπ + Rπ′ 6⊆ M for any maximal ideal M of R and hence, Rπ + Rπ′ = R by [1, Corollary 1.4].
We mention this graph here as we need some properties of this graph in our discussion.

We say that a ring R is quasi-local if R has only one maximal ideal. A Noetherian quasi-local
ring is called a local ring. For a ring R, we denote R\{0} by R∗, the polynomial ring in one
variable X over R by R[X], and for n ≥ 2, the polynomial ring in n variables X1, X2, . . . , Xn

over R by R[X1, X2, . . . , Xn]. If R is a subring of a ring T , then it is assumed that R contains the
identity element of T . If a set A is a proper subset of a set B, then we denote it by A ⊂ B. The
Krull dimension of a ring R is referred to as the dimension of R and is denoted by dimR. For
definitions and results from Commutative Ring Theory that are used in this paper, the reader can
refer any of the following books [1, 6, 8, 12].
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The reader can refer any of the standard text book in Graph Theory (for example, [2, 3]) for
the standard definitions and results from graph theory that are used in this paper. If G = (V,E)
is a connected graph, then the diameter (respectively, the radius) of G is denoted by diam(G)
(respectively, r(G)).

2. Some necessary conditions on Max(R) so that MGI(R) is connected

Throughout this paper, unless otherwise specified, we useR to denote an atomic domain which
admits at least two maximal ideals. This section aims to determine some necessary conditions on
Max(R) so that MGI(R) is connected. We begin with the following lemma.

Lemma 2.1. If a prime ideal P of R is such that P 6⊆ J(R), then there exists Rπ ∈ I(R) such
that π ∈ P .

Proof. Choose a ∈ P\J(R). Since R is atomic and a ∈ NU(R)\{0}, there exist π1, . . . , πn ∈
Irr(R) such that a =

∏n
i=1 πi. Observe that πi /∈ J(R) for each i, 1 ≤ i ≤ n and as P is a

prime ideal of R, πj ∈ P for some j with 1 ≤ j ≤ n. With π = πj , we get that π ∈ P and
Rπ ∈ I(R)

Lemma 2.2. If M1,M2 . . . ,Mn (n ∈ N\{1}) are pairwise distinct maximal ideals of R, then for
each i (1 ≤ i ≤ n), there exists Rπi ∈ I(R) with πi ∈Mi\(

⋃
j∈{1,2,...,n}\{i}Mj).

Proof. As Ms 6⊆ Mt for all distinct s, t with 1 ≤ s, t ≤ n, for each i (1 ≤ i ≤ n), we can find
xi ∈ Mi\(

⋃
j∈{1,2,...,n}\{i}Mj) by [1, Proposition 1.11(i)]. By the choice of xi, no irreducible

factor of xi in R can belong to Mj for any j with 1 ≤ j ≤ n, j 6= i and since Mi ∈ Spec(R), we
can find an irreducible factor πi of xi in R with πi ∈ Mi. Thus for each i, 1 ≤ i ≤ n, there exists
Rπi ∈ I(R) with πi ∈Mi\(

⋃
j∈{1,2,...,n}\{i}Mj).

In the following lemma, we provide a necessary condition on |Max(R)| such that MGI(R) is
connected.

Lemma 2.3. If MGI(R) is connected, then the number of maximal ideals of R is greater than 2.

Proof. Assume that MGI(R) is connected. By assumption on R, R has at least two maximal
ideals. Suppose that |Max(R)| = 2. Let Max(R) = {M1,M2}. Define the sets V1, V2 as follows:
V1 = {Rπ ∈ I(R) | π ∈ M1} and V2 = {Rπ′ ∈ I(R) | π′ ∈ M2}. By Lemma 2.1, Vi 6= ∅ for
each i, 1 ≤ i ≤ 2 and it is clear that V1 ∩ V2 = ∅. If Rπ ∈ V1 and Rπ′ ∈ V2, then π ∈ M1 but not
in M2 and π′ ∈ M2 but not in M1. Hence, Rπ + Rπ′ 6⊆ M1 ∪M2. As Max(R) = {M1,M2}, we
get that Rπ + Rπ′ is not a subset of any maximal ideal of R. Thus, there is no edge of MGI(R)
which joins a vertex in V1 to a vertex in V2 and so, by [3, Theorem 2-1], we obtain that MGI(R) is
not connected. Hence, if MGI(R) is connected, then |Max(R)| ≥ 3.

In Lemma 2.5, we provide another necessary condition on Max(R) so that MGI(R) is con-
nected. We use the following lemma in its proof.

Lemma 2.4. For a simple graph G = (V,E) with |V | ≥ 2, if for some v ∈ V , v and w are
adjacent in G for each w ∈ V , w 6= v, then Gc is not connected.
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Proof. Since V has more than one element, we can find u ∈ V with u 6= v. If there is a path in Gc

between v and u, then v and w are adjacent in Gc for some w ∈ V \{v}. This is impossible, since
v and w are adjacent in G. Therefore, Gc is not connected.

We say that elements a, b of a ring R are associates in R if a = ub for some u ∈ U(R). If R is
an integral domain and a ∈ R\{0}, then b ∈ R is an associate of a in R if and only if Ra = Rb.

Lemma 2.5. If MGI(R) is connected, then for any M ∈Max(R), M is not principal.

Proof. Assume that MGI(R) is connected. If there is a principal maximal ideal M of R, then
M = Rπ for some π ∈ Irr(R)\J(R), since R is atomic and M ∈ Spec(R) but M 6⊆ J(R). Note
that Rπ ∈ I(R). As |Max(R)| ≥ 2, it follows from Lemma 2.2 that |I(R)| ≥ 2. Hence, we can
find Rπ′ ∈ I(R) with Rπ′ 6= Rπ. Thus π and π′ are not associates in R and so, Rπ′ 6⊆ Rπ = M .
Hence, Rπ + Rπ′ = R. Thus Rπ and Rπ′ are adjacent in CGI(R) = (MGI(R))c for all Rπ′ ∈
I(R)\{Rπ}. This implies by Lemma 2.4 that MGI(R) is not connected. This is a contradiction,
since MGI(R) is connected by assumption. Hence, no maximal ideal of R is principal.

If R admits a maximal ideal M such that M is principal, then it is noted in the proof of Lemma
2.5 that M = Rπ for some π ∈ Irr(R)\J(R) and Rπ is not adjacent to any Rπ′ ∈ I(R)\{Rπ}
in MGI(R). It is natural to characterize R such that any two vertices of MGI(R) are not adjacent
in MGI(R). This happens if and only if MGI(R) has no edges. With the help of the following
lemmas, in Theorem 2.9, we characterize R such that MGI(R) has no edges.

Lemma 2.6. If MGI(R) has no edges, then each maximal ideal of R is principal.

Proof. Let M ∈ Max(R). Since R is atomic and M 6⊆ J(R), we can find Rπ ∈ I(R) with
Rπ ⊆ M by Lemma 2.1. For any a ∈ M\J(R), it is possible to find Rπ1 ∈ I(R) with π1 is a
factor of a in R and π1 ∈M . Note that Rπ+Rπ1 ⊆M and so, Rπ1 = Rπ, since MGI(R) has no
edges by assumption. Hence, a ∈ Rπ. This shows that M ⊆ Rπ ∪ J(R). As M 6⊆ J(R), we get
that M ⊆ Rπ and so, M = Rπ is principal.

Lemma 2.7. If MGI(R) has no edges, then each non-zero prime ideal of R is principal and
maximal.

Proof. Let P ∈ Spec(R)\{(0)}. Since any proper ideal of a ring is contained in a maximal ideal,
there exists M ∈ Max(R) with P ⊆ M . Note that M = Rπ for some Rπ ∈ I(R) by the proof
of Lemma 2.6. For a ∈ P\{0}, we can find an irreducible factor π′ of a in R with π′ ∈ P , since
R is atomic and P ∈ Spec(R). As π′ ∈ Rπ, we get that π′ = uπ for some u ∈ U(R). Therefore,
π = u−1π′ ∈ P and so, P = Rπ = M . This shows that any non-zero P ∈ Spec(R) is principal
and maximal.

Lemma 2.8. If MGI(R) has an edge, then R has a maximal ideal which is not principal.

Proof. By assumption, it is possible to find Rπ,Rπ′ ∈ I(R) with Rπ and Rπ′ are adjacent in
MGI(R). Hence, Rπ+Rπ′ ⊆M for some maximal idealM ofR. IfM = Rm for somem ∈M ,
then π = u1m and π′ = u2m for some u1, u2 ∈ U(R). This implies that π and π′ are associates of
each other. This is a contradiction, since Rπ 6= Rπ′ and so, M is not principal.
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Theorem 2.9. The following statements are equivalent:
(1) Every ideal of R is principal (that is, R is a principal ideal domain (PID)).
(2) Every maximal ideal of R is principal.
(3) MGI(R) has no edges.

Proof. (1)⇒ (2) This is clear.
(2)⇒ (3) This follows by Lemma 2.8.
(3) ⇒ (1) By Lemma 2.7, we get that every prime ideal of R is principal. Hence, every ideal

of R is principal by [8, Exercise 10, page 8] (that is, R is a PID).

We end this section with the following proposition in which we provide one more necessary
condition such that MGI(R) is connected.

Proposition 2.10. If MGI(R) is connected, then given M ∈Max(R), there exist Rπ ∈ I(R) and
N ∈Max(R)\{M} such that π ∈M ∩N .

Proof. Assume that MGI(R) is connected. LetM ∈Max(R). AsM 6⊆ J(R) andM ∈ Spec(R),
there exists Rπ ∈ I(R) with π ∈ M by Lemma 2.1. If M ⊆

⋃
N∈Max(R)\{M}N , then there

exists N ∈ Max(R)\{M} with π ∈ N and so, π ∈ M ∩ N . Hence, we assume that M 6⊆⋃
N∈Max(R)\{M}N . Choose an element m ∈ M with m /∈

⋃
N∈Max(R)\{M}N . By the choice of

m, it follows that no irreducible divisor of m in R can belong to N for any maximal ideal N of
R with N 6= M . Since M ∈ Spec(R), we can choose an irreducible divisor π1 of m in R with
Rπ1 ∈ I(R) and π1 ∈ M . Let N ∈ Max(R)\{M}. Note that Rπ1 + N = R. Now, rπ1 + s = 1
for some r ∈ R and s ∈ N . Since R is atomic and N ∈ Spec(R), there exists π2 ∈ Irr(R)
with π2 is a divisor of s in R and π2 ∈ N . Observe that Rπ1 + Rπ2 = R and Rπ2 ∈ I(R).
Thus Rπ1 and Rπ2 are not adjacent in MGI(R). By assumption, MGI(R) is connected. Let
d(Rπ1, Rπ2) = k in MGI(R). Then k ≥ 2 and there are elements Rπ11, . . . , Rπ1k−1 ∈ I(R) with
Rπ1 − Rπ11 − . . . − Rπ1k−1 − Rπ2 is a path of length k between Rπ1 and Rπ2 in MGI(R). As
Rπ1 + Rπ11 is a subset of a maximal ideal of R, we obtain that π11 ∈ M by the choice of π1.
If k = 2, then as π2 /∈ M , Rπ11 + Rπ2 ⊆ N ′ for some N ′ ∈ Max(R) with N ′ 6= M . Hence,
π11 ∈ M ∩N ′. If k ≥ 3, then π12 /∈ M , as d(π1, π2) = k by assumption. From Rπ11 + Rπ12 is a
subset of a maximal ideal ofR, we can findN ′′ ∈Max(R) withN ′′ 6= M andRπ11+Rπ12 ⊆ N ′′.
Hence, π11 ∈M ∩N ′′.

This shows that if MGI(R) is connected, then given M ∈ Max(R), there exist Rπ ∈ I(R)
and N ∈Max(R)\{M} such that π ∈M ∩N .

3. Some sufficient conditions on Max(R) so that MGI(R) is connected and some related
results

As in Section 2, unless otherwise specified, we use R to denote an atomic domain with at least
two maximal ideals. In this section, we provide some sufficient conditions on Max(R) such that
MGI(R) is connected.

For the sake of convenience, we introduce the following definition. We say that Max(R)
satisfies (SC1) if given any two distinct M,N ∈ Max(R), then there exists Rπ ∈ I(R) with
π ∈M ∩N .
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Lemma 3.1. If Max(R) satisfies (SC1), then MGI(R) is connected and its diameter is at most
two.

Proof. Let Rπ1, Rπ2 ∈ I(R) be distinct. We can assume that Rπ1 and Rπ2 are not adjacent in
MGI(R). Note that there exist M,N ∈ Max(R) such that π1 ∈ M and π2 ∈ N . As Rπ1 and
Rπ2 are not adjacent in MGI(R) by assumption, it follows that M 6= N . As Max(R) satisfies
(SC1) by assumption, there exists Rπ ∈ I(R) with π ∈ M ∩ N . Hence, Rπ1 + Rπ ⊆ M and
Rπ+Rπ2 ⊆ N and so, Rπ1−Rπ−Rπ2 is a path of length 2 between Rπ1 and Rπ2 in MGI(R).
This shows that MGI(R) is connected and diam(MGI(R)) ≤ 2.

IfMax(R) satisfies (SC1), then in Corollary 3.6, we prove diam(MGI(R)) = 2 = r(MGI(R))
with the help of the following results.

Lemma 3.2. For a simple graph G = (V,E) with |V | ≥ 2, if both G and Gc are connected, then
r(Gc) ≥ 2 and r(G) ≥ 2.

Proof. Let v ∈ V . Since |V | ≥ 2 and G is connected by hypothesis, we can find u ∈ V such
that v and u are adjacent in G and so, dGc(v, u) ≥ 2. Hence, we get that eGc(v) ≥ 2. Therefore,
r(Gc) ≥ 2. Similarly, it can be shown that r(G) ≥ 2.

Note that (MGI(R))c = CGI(R). In Proposition 3.4, we prove CGI(R) is connected and
diam(CGI(R)) ≤ 3 so that we can apply Lemma 3.2 when MGI(R) is connected. We use the
following lemma in its proof.

Lemma 3.3. If π1π2 /∈ J(R) for some distinct Rπ1, Rπ2 ∈ I(R), then there is a path of length at
most two between Rπ1 and Rπ2 in CGI(R).

Proof. Note that π1π2 /∈ M for some M ∈ Max(R), since π1π2 /∈ J(R) by assumption. Hence,
Rπ1π2 + M = R. Now, rπ1π2 + m = 1 for some r ∈ R and m ∈ M . Since m /∈ J(R) and R is
atomic by hypothesis, we can find an irreducible factor π of m in R with Rπ ∈ I(R) and π ∈ M .
Observe that Rπ1 + Rπ = R = Rπ2 + Rπ. Hence, Rπ1 − Rπ − Rπ2 is a path between Rπ1 and
Rπ2 in CGI(R).

Proposition 3.4. CGI(R) is connected and diam(CGI(R)) ≤ 3.

Proof. Let Rπ1, Rπ2 ∈ I(R) be distinct. Using arguments found in the proof of [10, Theorem
3.1], we show that there exists a path of length at most three between Rπ1 and Rπ2 in CGI(R).
We can assume that Rπ1 and Rπ2 are not adjacent in CGI(R).

If π1π2 /∈ J(R), then there exists a path of length two between Rπ1 and Rπ2 in CGI(R) by
Lemma 3.3.

Assume that π1π2 ∈ J(R). Since π1, π2 /∈ J(R), there exist M1,M2 ∈ Max(R) such that
π1 /∈ M1 and π2 /∈ M2. As π1π2 ∈ J(R), we get that π1 ∈ M2 and π2 ∈ M1. Now, rπ1 +m1 = 1
for some r ∈ R and m1 ∈ M1, since Rπ1 + M1 = R. Note that m1 /∈ M2 and Rπ1 + Rm1 = R.
For any irreducible divisor π of m1 in R, π /∈ M2, and Rπ1 + Rπ = R. Note that there exists at
least one irreducible divisor π of m1 in R such that π ∈M1. Observe that Rπ1 −Rπ is an edge of
CGI(R). Since ππ2 /∈ M2, ππ2 /∈ J(R). As Rπ2 + Rπ ⊆ M1, Rπ and Rπ2 are not adjacent in
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CGI(R). Note that there exists Rπ′ ∈ I(R) such that Rπ − Rπ′ − Rπ2 is a path P of length two
between Rπ and Rπ2 in CGI(R) by Lemma 3.3. The union of the edge Rπ1 −Rπ and the path P
between Rπ and Rπ2 gives a path of length three between Rπ1 and Rπ2 in CGI(R).

This proves that CGI(R) is connected and diam(CGI(R)) ≤ 3.

The following corollaries are needed in our future discussion.

Corollary 3.5. Diam(CGI(R)) = 3 if and only if there exist Rπ1, Rπ2 ∈ I(R) with Rπ1 6= Rπ2
such that Rπ1 and Rπ2 are not adjacent in CGI(R) and π1π2 ∈ J(R).

Proof. Assume that diam(CGI(R)) = 3. Then it follows from Proposition 3.4 that there exist
distinct Rπ1, Rπ2 ∈ I(R) such that d(Rπ1, Rπ2) = 3 in CGI(R). Hence, Rπ1 and Rπ2 are not
adjacent in CGI(R) and by Lemma 3.3, it follows that π1π2 ∈ J(R).

Conversely, assume that there exist distinct Rπ1, Rπ2 ∈ I(R) such that Rπ1 and Rπ2 are not
adjacent in CGI(R) and π1π2 ∈ J(R). It is enough to show that there is no path of length two
between Rπ1 and Rπ2 in CGI(R), since diam(CGI(R)) ≤ 3. If Rπ3 ∈ I(R) is such that Rπ1
and Rπ3 are adjacent in CGI(R), then Rπ1 + Rπ3 = R and so, Rπ2 = Rπ1π2 + Rπ3π2. If
M ∈ Max(R) is such that π3 ∈ M , then π2π3, π1π2 ∈ M and therefore, π2 ∈ M . Hence,
Rπ3+Rπ2 ⊆M and so,Rπ3 andRπ2 are not adjacent in CGI(R). This proves that d(Rπ1, Rπ2) ≥
3 in CGI(R) and so, d(Rπ1, Rπ2) = 3 in CGI(R). Hence, diam(CGI(R)) = 3.

Corollary 3.6. If Max(R) satisfies (SC1), then MGI(R) is connected and diam(MGI(R)) =
2 = r(MGI(R)).

Proof. Assume that Max(R) satisfies (SC1). Then MGI(R) is connected and diam(MGI(R)) ≤
2 by Lemma 3.1. Note that (MGI(R))c = CGI(R) is connected by Proposition 3.4. By applying
Lemma 3.2 with G = MGI(R), we obtain that r(MGI(R)) ≥ 2. If G is any connected graph,
then it is well-known that diam(G) ≥ r(G). Hence, diam(MGI(R)) = 2 = r(MGI(R)).

In Corollary 3.8, we provide another sufficient condition so that MGI(R) is connected. We use
the following lemma in its proof.

Lemma 3.7. If a simple graph G is not connected, then Gc is connected and diam(Gc) ≤ 2.

Proof. This follows from the proof of [2, Theorem 1.5.7].

Corollary 3.8. If diam(CGI(R)) = 3, then MGI(R) is connected.

Proof. If MGI(R) is not connected, then as (MGI(R))c = CGI(R), we get that diam(CGI(R)) ≤
2 by Lemma 3.7. This contradicts the assumption diam(CGI(R)) = 3. Therefore, MGI(R) is
connected.

If |Max(R)| = 3, then we prove in the following theorem that MGI(R) is connected if and
only if diam(CGI(R)) = 3.
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Theorem 3.9. If R is an atomic domain with |Max(R)| = 3, then the following statements are
equivalent:

(1) MGI(R) is connected.
(2) If M ∈Max(R), then there exist Rπ ∈ I(R) and N ∈Max(R)\{M} with π ∈M ∩N .
(3) diam(CGI(R)) = 3.

Proof. Assume that Max(R) = {M1,M2,M3}.
(1) ⇒ (2) This follows from Proposition 2.10. (For this part of the proof, we do not need the

assumption that |Max(R)| = 3.)
(2) ⇒ (3) By (2), there exist Rπ ∈ I(R) and Mk ∈ Max(R)\{M1} with π ∈ M1 ∩Mk.

Observe that k is either 2 or 3. For j ∈ {1, 2, 3}\{1, k}, again by (2), there exist Rπ′ ∈ I(R),
Mj′ ∈ Max(R) for some j′ ∈ {1, 2, 3}\{j} with π′ ∈ Mj ∩Mj′ . Observe that Rπ 6= Rπ′, since
π /∈ Mj and π′ ∈ Mj . As j′ ∈ {1, k}, we get that Rπ + Rπ′ 6= R. Thus Rπ and Rπ′ are not
adjacent in CGI(R). Note that ππ′ ∈ J(R). Hence, diam(CGI(R)) = 3 by Corollary 3.5.

(3)⇒ (1) This follows from Corollary 3.8.

In the following example, we provide a unique factorization domain (UFD)R such thatMax(R)
satisfies (SC1) and diam(CGI(R)) = 3.

Example 3.10. Let n ≥ 3. Let p1, p2, p3, . . . , pn be distinct prime numbers with p1 = 2. With
T = Z[X], letM1 = T2+T (X−1),M2 = Tp2+TX,M3 = Tp3+TX, . . . ,Mn = Tpn+TX and
S = T\(

⋃n
i=1Mi). Then R = S−1T is a UFD, Max(R) satisfies (SC1), MGI(R) is connected

with diam(MGI(R)) = 2 = r(MGI(R)), and diam(CGI(R)) = 3.

Proof. It is well-known that T is a UFD. Note that M1,M2,M3, . . . ,Mn are maximal ideals of
T and are pairwise distinct. As T is a UFD and S = T\(

⋃n
i=1Mi) is a multiplicatively closed

subset (m.c. subset) of T , R = S−1T is a UFD follows by applying [1, Proposition 3.11(iv)]
and [8, Theorem 5]. Hence, R is atomic. By [1, Proposition 1.11(i)], it follows that {Mi | i ∈
{1, 2, 3, . . . , n}} is the set of prime ideals of T maximal with respect to not meeting S and so,
we obtain by [1, Proposition 3.11(iv)] that Max(R) = {S−1Mi | i ∈ {1, 2, 3, . . . , n}}. Thus
|Max(R)| = n. Observe that TX ∈ Spec(T ) and TX ∩ S = ∅ and so, S−1TX ∈ Spec(R).
Hence, X is a prime element of R. Note that X /∈ J(R), since X /∈ S−1M1. Thus RX ∈ I(R).
Note that X ∈

⋂n
k=2 S

−1Mk. For 2 ≤ k ≤ n, note that pk = 2tk + 1 for some tk ∈ N and
X−pk ∈M1∩Mk andX−pk /∈Mj for any j with 2 ≤ j ≤ n and j 6= k. As T (X−pk) ∈ Spec(T )
and it does not meet S, we get that X − pk is a prime element of R. Since X − pk /∈ J(R), we
arrive at R(X − pk) ∈ I(R). It is clear that X − pk ∈ S−1M1∩S−1Mk. This shows that Max(R)
satisfies (SC1) and hence, MGI(R) is connected with diam(MGI(R)) = r(MGI(R)) = 2 by
Corollary 3.6.

For 2 ≤ k ≤ n, note that X ∈ S−1Mk and S−1Mk = Rpk + RX = R(X − pk) + RX . Also,
X−pk ∈ S−1M1, and so, (X−pk)X ∈

⋂n
i=1 S

−1Mi = J(R). Hence, by Corollary 3.5, we obtain
that diam(CGI(R)) = 3.

In the following example, we provide a UFD R with |Max(R)| = 3 but Max(R) does not
satisfy (SC1).
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Example 3.11. Consider T = Z[X] and the prime ideals of T given by P1 = 2T, P2 = T3 + TX ,

and P3 = T5 + TX . If S = T\(
3⋃

i=1

Pi), then R = S−1T is a UFD, |Max(R)| = 3, and Max(R)

does not satisfy (SC1).

Proof. Note that P1 ∈ Spec(T ) and P2, P3 ∈Max(T ). Observe that Pi and Pj are not comparable
under inclusion for all distinct i, j with 1 ≤ i, j ≤ 3. As S = T\(

⋃3
i=1 Pi) is a m.c. subset of T , T

is a UFD, we get that R = S−1T is a UFD by applying [1, Proposition 3.11(iv)] and [8, Theorem
5]. Hence, R is atomic. It can be shown using [1, Proposition 1.11(i)] that the set of prime ideals
of T maximal with respect to not meeting S equals {Pi | 1 ≤ i ≤ 3}. Hence, by [1, Proposition
3.11(iv)], we obtain that Max(S−1T ) = {S−1Pi | 1 ≤ i ≤ 3} and so, |Max(R)| = 3. As the
maximal ideal S−1P1 = S−12T of R is principal, MGI(R) is not connected by Lemma 2.5. With
M1 = S−1P1 andM2 = S−1P2, note thatM1,M2 ∈Max(R) and are distinct. If π ∈ Irr(R)∩M1,
then π = 2u for some u ∈ U(R). As M1 6= M2, it follows that 2 /∈ M2 and so, π /∈ M2. This
shows that Max(R) does not satisfy (SC1). Since MGI(R) is not connected, one also use Lemma
3.1 to conclude that Max(R) does not satisfy (SC1).

In the following example, we provide a UFD R such that Max(R) is not finite and Max(R)
does not satisfy (SC1).

Example 3.12. If T = Z2Z, then R = T [X] is a UFD, Max(R) is not finite, and Max(R) does
not satisfy (SC1).

Proof. Note that T = Z2Z is a local PID. Hence, R = T [X] is a UFD. Observe that J(R) = (0)
by [1, Exercise 4, p.11] and so, Max(R) is not finite. Since R

R(1+2X)
∼= Q as rings, we get that

R(1 + 2X) ∈ Max(R). Since R(1 + 2X) is principal, MGI(R) is not connected by Lemma 2.5.
Hence, Max(R) does not satisfy (SC1) by Lemma 3.1.

For a ring T and f(X) ∈ T [X]\{0}, the degree of f(X) is denoted by deg(f(X)).
In Example 3.14, we provide a Noetherian domain R such that Max(R) is not finite and

Max(R) satisfies (SC1). We use the following lemma in its verification.

Lemma 3.13. The subring R = K[X2, X3] of the ring T = K[X] (where K is a field) is a
Noetherian domain, dimR = 1, M = X2K[X] ∈ Max(R), Max(R) is not finite, and for each
α ∈ K, (X − α)X2 is an irreducible element of R.

Proof. It is well-known that T = K[X] is a PID. Observe that R is a domain, since R is a subring
of T . By [1, Corollary 7.7], R = K[X2, X3] is Noetherian and observe that R = K + X2K[X].
Thus M = X2K[X] is an ideal of R and M = X2K[X] ∈ Max(R), since R

X2K[X]
∼= K as rings

and K is a field. Observe that T = K[X] = R + RX is a finitely generated R-module. For
any f(X) ∈ T , R[f(X)] ⊆ T and T is a finitely generated R-module. Hence, f(X) is integral
over R by (iii) ⇒ (i) of [1, Proposition 5.1]. This shows that T is an integral extension of R.
By [6, 11.8], we get that dimR = 1, since dimT = 1. Note that U(T ) = U(R) = K∗. If
r ∈ J(R), then 1 − r ∈ U(R) by [1, Proposition 1.9]. Hence, 1 − r = α for some α ∈ K∗ and
so, r = 1− α ∈ J(R) ∩K = (0). This shows that J(R) = (0). This implies that Max(R) is not
finite.
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For any α ∈ K, we claim that (X−α)X2 ∈ Irr(R). Let r1, r2 ∈ R be such that (X−α)X2 =
r1r2. Since (X − α)X2 ∈ M and M ∈ Max(R), either r1 or r2 belongs to M . If r1 ∈ M , then
r1 = X2f(X) for some f(X) ∈ T . Hence, (X − α)X2 = X2f(X)r2 and so, X − α = f(X)r2.
This implies that 1 = deg(f(X)) + deg(r2). From X /∈ R, we get that deg(r2) = 0 and so,
r2 ∈ K∗ = U(R). Similarly, if r2 ∈ M , then it can be shown that r1 ∈ U(R). This shows that
(X − α)X2 ∈ Irr(R).

Example 3.14. If R = C[X2, X3], then Max(R) is not finite and Max(R) satisfies (SC1).

Proof. From the proof of Lemma 3.13, we get that R is a Noetherian domain, T = C[X] is an
integral extension of R, dimR = 1, M = X2C[X] ∈Max(R), and J(R) = (0). Hence, Max(R)
is not finite. We now verify that Max(R) satisfies (SC1). Consider M1,M2 ∈ Max(R) with
M1 6= M2. Since T is an integral extension of R, there exist N1, N2 ∈ Spec(T ) with Ni ∩R = Mi

for 1 ≤ i ≤ 2 by [1, Theorem 5.10]. Note that N1 6= N2 and N1, N2 ∈Max(T ), since dimT = 1.
As C is an algebraically closed field, we obtain that N1 = T (X − α1) and N2 = T (X − α2) for
some α1, α2 ∈ C by [8, Theorem 32]. Observe that α1 6= α2. Either αi = 0 for some i between 1
and 2 or both α1 and α2 are not equal to 0.

Assume that exactly one between α1 and α2 equals 0. We can assume α1 = 0 but α2 6= 0. Then
N1 = TX and M1 = X2C[X] = M . Observe that (X − α2)X

2 ∈ Irr(R) by Lemma 3.13 and
Rπ ∈ I(R) with π = (X − α2)X

2. It is clear that π ∈
⋂2

i=1Mi.
Assume that αi 6= 0 for each i, 1 ≤ i ≤ 2. Either α1 + α2 = 0 or α1 + α2 6= 0. If α1 + α2 = 0,

then
∏2

i=1(X−αi) = X2−α2
1 ∈ R. We claim thatX2−α2

1 ∈ Irr(R). Assume thatX2−α2
1 = r1r2

for some r1, r2 ∈ R. Hence, 2 = deg(X2 − α2
1) = deg(r1) + deg(r2). Observe that deg(ri) = 0

for some i with 1 ≤ i ≤ 2, since R does not contain any g(X) ∈ T with deg(g(X)) = 1. Hence,
one between r1 and r2 is a unit in R and so, X2 − α2

1 ∈ Irr(R). With π = X2 − α2
1, we get that

Rπ ∈ I(R) and π ∈ (
⋂2

i=1Ni) ∩R =
⋂2

i=1Mi.
If α1 + α2 6= 0, then we claim that (

∏2
i=1(X − αi))X

2 ∈ Irr(R). Observe that (
∏2

i=1(X −
αi))X

2 ∈ M ⊂ R. Assume that (
∏2

i=1(X − αi))X
2 = r1r2 for some r1, r2 ∈ R. Either r1

or r2 belongs to M . If r1 ∈ M , then r1 = X2f(X) for some f(X) ∈ T . Hence, we get that∏2
i=1(X − αi) = f(X)r2. Note that 2 = deg(

∏2
i=1(X − αi)) = deg(f(X)) + deg(r2). This

implies that deg(r2) = 0 or 2, since R does not contain any g(X) ∈ T with deg(g(X)) = 1. As
0 6= −(α1 +α2) = the coefficient of X in

∏2
i=1(X−αi) = the coefficient of X in f(X) multiplied

by the constant term of r2, we get that f(X) must be of positive degree. Hence, deg(r2) = 0 and
so, r2 is a unit in R. Similarly, if r2 ∈ M , then it can be shown that r1 is a unit in R. This shows
that (

∏2
i=1(X − αi))X

2 ∈ Irr(R). With π = (
∏2

i=1(X − αi))X
2, we obtain that Rπ ∈ I(R) and

π == ((X − α1)X)((X − α2)X) ∈ (N1 ∩N2) ∩R =
⋂2

i=1Mi.
From the above discussion, we obtain that Max(R) satisfies (SC1). Hence by Corollary 3.6,

we get that MGI(R) is connected and diam(MGI(R)) = 2 = r(MGI(R)).

If C is replaced by R in the previous example, then we verify in the following example that the
conclusion of the previous example fails to hold.

Example 3.15. If K = R and T,R are as in Lemma 3.13, then Max(R) does not satisfy (SC1).
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Proof. In the notation of the statement of Lemma 3.13, T = R[X], R = R[X2, X3] = R +
X2R[X]. Note that T (X2+1) ∈Max(T ), sinceX2+1 is irreducible over R. As T (X2+1)∩R =
R(X2 + 1), we get that R(X2 + 1) ∈Max(R) and is principal. Hence, MGI(R) is not connected
by Lemma 2.5. Therefore, Max(R) does not satisfy (SC1) by Lemma 3.1.

Note that |I(R)| ≥ 2 by Lemma 2.2. If MGI(R) is connected, then as CGI(R) is connected
by Proposition 3.4, it follows that CGI(R) has at least one edge and so, diam(MGI(R)) ≥ 2.
In fact, we obtain from Lemma 3.2 that r(MGI(R)) ≥ 2. It is natural to ask whether there is a
necessary and sufficient condition so that MGI(R) is connected with diam(MGI(R)) = 2. The
following proposition provides an answer to this question in the case 3 ≤ |Max(R)| <∞.

Proposition 3.16. If 3 ≤ |Max(R)| <∞, then the following statements are equivalent:
(1) MGI(R) is connected and diam(MGI(R)) = 2.
(2) Max(R) satisfies (SC1).
Moreover, if (2) holds, then r(MGI(R)) = 2.

Proof. Assume that R has exactly n maximal ideals with n ∈ N (n ≥ 3) and Max(R) =
{M1,M2,M3, . . . ,Mn}.

(1) ⇒ (2) Assume that MGI(R) is connected and diam(MGI(R)) = 2. Consider Mi,Mj ∈
Max(R) with Mi 6= Mj . By Lemma 2.2, we know that there exist πi, πj ∈ Irr(R) such that Mi

(respectively, Mj) is the only maximal ideal of R which contains πi (respectively, πj). Therefore,
Rπi, Rπj ∈ I(R) andRπi +Rπj is not contained in any maximal ideal ofR. Hence, Rπi +Rπj =
R. This implies that Rπi and Rπj are not adjacent in MGI(R). As diam(MGI(R)) = 2 by
assumption, there exists Rπ ∈ I(R) with Rπ is adjacent to both Rπi and Rπj in MGI(R). From
the choice of πi and πj , it is now clear that π ∈Mi ∩Mj .

(2) ⇒ (1) Assume that Max(R) satisfies (SC1). Then by Corollary 3.6, we obtain that
MGI(R) is connected and diam(MGI(R)) = 2 = r(MGI(R)). Note that the proof of (2)⇒ (1)
does not need the assumption |Max(R)| <∞.

Assume that (2) holds. Then it is already noted in the proof of (2) ⇒ (1) of this proposition
that r(MGI(R)) = 2.

4. Some atomic domains R such that MGI(R) is connected

As in Section 2, unless otherwise specified, we use R to denote an atomic domain with at least
two maximal ideals. In this section, we provide some atomic domains R such that MGI(R) is
connected.

Some unique factorization domains R are provided in Section 3 such that MGI(R) is not
connected. Let n ∈ N\{1} and let R = K[X1, X2, . . . , Xn], the polynomial ring in n variables
X1, X2, . . . , Xn over a field K. It is well-known that R is a UFD. Note that J(R) = (0) by [1,
Exercise 4, p.11] and so, Max(R) is not finite. It is known that each M ∈ Max(R) is generated
by n elements and cannot be generated by less than n elements (see [12, Theorem 3, p.281 and
Theorem 22, p.217]). Thus no maximal ideal of R is principal. We are interested to know whether
or not MGI(R) is connected.
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For the sake of convenience, we first introduce the following definition. We say that Max(R)
satisfies (SC2), if given any two distinct M1,M2 ∈ Max(R), there exist M3 ∈ Max(R) and
Rπ,Rπ′ ∈ I(R) with π ∈M1 ∩M3 and π′ ∈M2 ∩M3.

We verify in the following lemma that (SC1) implies (SC2).

Lemma 4.1. If Max(R) satisfies (SC1), then Max(R) satisfies (SC2).

Proof. Let M1,M2 ∈ Max(R) be distinct. Since Max(R) satisfies (SC1) by assumption, there
exists Rπ ∈ I(R) such that π ∈ M1 ∩M2. With M3 = M1 and π′ = π, we obtain that Rπ =
Rπ′ ∈ I(R), π ∈M1 ∩M3, and π′ ∈M2 ∩M3. Therefore, Max(R) satisfies (SC2).

The following proposition is used in Example 4.6 to verify that MGI(K[X1, X2, . . . , Xn]) is
connected.

Proposition 4.2. IfMax(R) satisfies (SC2), then MGI(R) is connected with diam(MGI(R)) ≤ 3
and r(MGI(R)) ≥ 2.

Proof. Assume that Max(R) satisfies (SC2). Let Rπ1, Rπ2 ∈ I(R) be distinct. Assume that
Rπ1 and Rπ2 are not adjacent in MGI(R). Hence, Rπ1 + Rπ2 = R. Since π1, π2 are not units
in R, we can find M1,M2 ∈ Max(R) with π1 ∈ M1 and π2 ∈ M2. As Rπ1 + Rπ2 = R, it
follows that M1 6= M2. Since Max(R) satisfies (SC2) by assumption, there exist M3 ∈ Max(R)
and Rπ,Rπ′ ∈ I(R) with π ∈ M1 ∩ M3 and π′ ∈ M2 ∩ M3. Note that Rπ1 + Rπ ⊆ M1,
Rπ2 + Rπ′ ⊆ M2, and Rπ + Rπ′ ⊆ M3. If Rπ1 and Rπ′ are adjacent in MGI(R), then Rπ1 −
Rπ′ − Rπ2 is a path between Rπ1 and Rπ2 in MGI(R). Similarly, if Rπ2 and Rπ are adjacent
in MGI(R), then Rπ1 − Rπ − Rπ2 is a path between Rπ1 and Rπ2 in MGI(R). If Rπ1 and Rπ′

are not adjacent in MGI(R) and Rπ2 and Rπ are not adjacent in MGI(R), then Rπ 6= Rπ′ and
Rπ1 − Rπ − Rπ′ − Rπ2 is a path between Rπ1 and Rπ2 in MGI(R). This shows that MGI(R)
is connected and diam(MGI(R)) ≤ 3. Now, by Proposition 3.4 and Lemma 3.2, we get that
r(MGI(R)) ≥ 2.

The following example illustrates Proposition 4.2.

Example 4.3. If K is an algebraically closed field and R = K[X1, X2, . . . , Xn] (n ≥ 2), then
MGI(R) is connected with diam(MGI(R)) ≤ 3 and r(MGI(R)) ≥ 2.

Proof. It is well-known that R is a UFD and J(R) = (0). Note that U(R) = K∗ by [1, Exercise
2(i), p.11]. Let M1,M2 ∈Max(R) be distinct. Since K is an algebraically closed field, we obtain
that there are α1, α2, . . . , αn ∈ K (respectively, β1, β2, . . . , βn ∈ K) with M1 =

∑n
i=1R(Xi− αi)

(respectively, M2 =
∑n

i=1R(Xi − βi)) by [8, Theorem 32]. As M1 6= M2, we get that αk 6= βk
for some k with 1 ≤ k ≤ n. Either αi = βi for some i with 1 ≤ i ≤ n or αi 6= βi for each i with
1 ≤ i ≤ n.

Assume that αi = βi for some i with 1 ≤ i ≤ n. As R(Xi−αi) ∈ Spec(R), with π = Xi−αi,
we get that Rπ ∈ I(R). If M3 = R(Xi − αi) +

∑
j∈{1,2,...,n}\{i}RXj , then M3 ∈ Max(R) and

with π = π′ = Xi − αi, π ∈M1 ∩M3 and π′ ∈M2 ∩M3.
Assume that αi 6= βi for each i with 1 ≤ i ≤ n. Hence, α1 6= β1 and α2 6= β2. Observe

that R(X1 − β1), R(X2 − α2) ∈ Spec(R). Hence, with π = X2 − α2 and π′ = X1 − β1,

44



www.ijc.or.id

Maximal graph of an atomic domain | S. Visweswaran

Rπ,Rπ′ ∈ I(R). With M3 = Rπ + Rπ′ if n = 2 and M3 = Rπ + Rπ′ +
∑n

j=3RXj if n ≥ 3, it
follows that M3 ∈Max(R), π ∈M1 ∩M3, and π′ ∈M2 ∩M3.

Thus it is shown that given any two distinct M1,M2 ∈ Max(R), there exist M3 ∈ Max(R)
and Rπ,Rπ′ ∈ I(R) with π ∈M1 ∩M3 and π′ ∈M2 ∩M3. Hence, Max(R) satisfies (SC2) and
so, MGI(R) is connected with diam(MGI(R)) ≤ 3 and r(MGI(R)) ≥ 2 by Proposition 4.2.

In Example 4.6, for any field K (K is not necessarily algebraically closed), we verify that
R = K[X1, X2, . . . , Xn] (n ≥ 2) is such that Max(R) satisfies (SC2) and hence, MGI(R) is
connected with diam(MGI(R)) ≤ 3 and r(MGI(R)) ≥ 2. First, we collect some facts that are
needed in our discussion to follow.

If an integral domain T is an integral extension of its subring S, then for any non-zero ideal I
of T , I ∩ S 6= (0). Choose t ∈ I , t 6= 0. We can find f(X) ∈ S[X], a monic polynomial of least
degree satisfied by t over S. Then the constant term of f(X) is not equal to zero and it belongs to
I ∩ S. Hence, I ∩ S 6= (0). If T satisfies a.c.c. on principal ideals, then so does S.

The following proposition is needed in the verification of Example 4.6.

Proposition 4.4. Let S be a subring of a UFD T such that T is an integral extension of S. If
J(T ) = (0) and Max(T ) satisfies (SC2), then Max(S) also satisfies (SC2).

Proof. Assume that T is a UFD, J(T ) = (0), and Max(T ) satisfies (SC2). As J(T ) = (0),
Max(T ) is not finite. By hypothesis, S is a subring of T and T is an integral extension of S.
Observe that J(S) = (0), since J(T ) ∩ S = J(S) by [1, Exercise 5(ii), p.67]. Hence, Max(S)
is not finite. Since T satisfies a.c.c. on principal ideals, we get that S satisfies a.c.c. on principal
ideals and so, S is atomic. Let M1,M2 ∈ Max(S) be distinct. By [1, Theorem 5.10], there exist
N1, N2 ∈ Spec(T ) withNi∩S = Mi for each i, 1 ≤ i ≤ 2. Observe thatN1, N2 ∈Max(T ) by [1,
Corollary 5.8]. Note thatN1 6= N2, sinceM1 6= M2. SinceMax(T ) satisfies (SC2) by assumption,
there existN3 ∈Max(T ) and Tξ, Tξ′ ∈ I(T ) with ξ ∈ N1∩N3 and ξ′ ∈ N2∩N3. As T is a UFD,
we obtain that Tξ, Tξ′ ∈ Spec(T ). Hence, P1 = Tξ∩S, P2 = Tξ′∩S ∈ Spec(S) and Pi 6= (0) for
each i, 1 ≤ i ≤ 2. Let M3 = N3 ∩ S. By [1, Corollary 5.8], we get that M3 ∈ Max(S). Observe
that P1 = Tξ ∩ S ⊆ (N1 ∩N3)∩ S = M1 ∩M3 and P2 = Tξ′ ∩ S ⊆ (N2 ∩N3)∩ S = M2 ∩M3.
Since S is atomic, J(S) = (0), and P1, P2 ∈ Spec(S), there are Sπ, Sπ′ ∈ I(S) with π ∈ P1

and π′ ∈ P2. Thus given any two distinct M1,M2 ∈ Max(S), there exist M3 ∈ Max(S) and
Sπ, Sπ′ ∈ I(S) with π ∈M1 ∩M3 and π′ ∈M2 ∩M3. Therefore, Max(S) satisfies (SC2).

The following example illustrates that the conclusion of Proposition 4.4 can fail to hold if the
hypothesis T is a UFD in its statement is omitted.

Example 4.5. Max(C[X2, X3]) satisfies (SC2) but Max(R[X2, X3]) does not satisfy (SC2).

Proof. As Max(C[X2, X3]) satisfies (SC1) by Example 3.14, it satisfies (SC2) by Lemma 4.1.
It is noted in the proof of Example 3.14 that J(C[X2, X3]) = (0). Since C is a finite extension
of R, it follows that C[X2, X3] is a finitely generated R[X2, X3]-module. Hence, C[X2, X3] is
an integral extension of R[X2, X3] by (iii) ⇒ (i) of [1, Proposition 5.1]. It is already verified
in Example 3.15 that MGI(R[X2, X3]) is not connected. Therefore, Max(R[X2, X3]) does not
satisfy (SC2) by Proposition 4.2.
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Example 4.6. If R = K[X1, X2, . . . , Xn] (n ≥ 2), where K is a field which is not necessar-
ily algebraically closed, then Max(R) satisfies (SC2) and hence, MGI(R) is connected with
diam(MGI(R)) ≤ 3 and r(MGI(R)) ≥ 2.

Proof. Let f(X1, X2, . . . , Xn) ∈ T = K[X1, X2, . . . , Xn], where K is an algebraic closure of K.
Then f(X1, X2, . . . , Xn) is a finite sum of elements of the type αXk1

1 X
k2
2 · · ·Xkn

n , where α ∈ K
and k1 ≥ 0, k2 ≥ 0, . . . , kn ≥ 0. Since K is an integral extension of K and K ⊂ R, we get that
any α ∈ K is integral over R. Therefore, by [1, Corollary 5.3], we obtain that f(X1, X2, . . . , Xn)
is integral over R. Hence, T is an integral extension of R. Now, T is a UFD, J(T ) = (0),
and it is shown in the proof of Example 4.3 that Max(T ) satisfies (SC2). Hence, Max(R) also
satisfies (SC2) by Proposition 4.4. Therefore, MGI(R) is connected with diam(MGI(R)) ≤ 3
and r(MGI(R)) ≥ 2 by Proposition 4.2.

Note that T = C[X1, X2, . . . , Xn] (n ≥ 2) is a UFD, J(T ) = (0), and Max(T ) satisfies (SC2)
by the proof of Example 4.3. Consider any subring S of T with R = R[X1, X2, . . . , Xn] ⊆ S.
Since T is an integral extension of R (indeed, T is a finitely generated R-module), we get that
T is an integral extension of S. Hence, by Proposition 4.4, Max(S) also satisfies (SC2) and so,
MGI(S) is connected with diam(MGI(S)) ≤ 3 and r(MGI(S)) ≥ 2 by Proposition 4.2. As
T is a finitely generated R-module and R is Noetherian, it follows that S is a finitely generated
R-module and so, S is Noetherian. If S = R + (X1, X2, . . . , Xn)T , then Max(S) satisfies (SC2).
Note that T and S have the same quotient field, i is integral over S but i /∈ S. Therefore, S is not
integrally closed and so, S is not a UFD.

Assume that I is a non-zero proper ideal of R = K[X1, X2, . . . , Xn] (n ≥ 2), where K is a
field. Consider the subring S = K + I of R. As U(R) = U(S) = K∗ and R is Noetherian,
we get that S satisfies a.c.c. on principal ideals and so, S is atomic. It follows as in the proof of
Lemma 3.13 that J(S) = (0) and so, Max(S) is not finite. We verify in Example 4.8 thatMax(S)
satisfies (SC2). We use the following lemma in its proof.

Lemma 4.7. Let S be a subring of a ring T . If a non-zero proper ideal I of T belongs to Max(S),
then given any M ∈Max(S), there exists N ∈Max(T ) such that N ∩ S = M .

Proof. Though this lemma is well-known, yet for the sake of completeness, we include a proof of
this lemma. Consider any M ∈ Max(S). Either M = I or M 6= I . Assume that M = I . Since I
is a proper ideal of T , we can find N ∈ Max(T ) with I ⊆ N and so, M = I ⊆ N ∩ S. Hence,
N ∩S = M . Assume that M 6= I . Since I ∈Max(S) by hypothesis, we get that I 6⊆M . Choose
a ∈ I\M . Observe that MTa ⊆ MI , since I is an ideal of T . This implies that MTa ⊆ M .
As a /∈ M , we obtain that MT 6= T . Hence, there exists N ∈ Max(T ) with MT ⊆ N and so,
M ⊆MT ∩ S ⊆ N ∩ S. Therefore, M = N ∩ S, since M ∈Max(S).

Example 4.8. Let R = K[X1, X2, . . . , Xn] (n ≥ 2), where K is a field. Consider a non-zero
proper ideal I of R and the subring S of R given by S = K + I . Then Max(S) satisfies (SC2)
and hence, MGI(S) is connected with diam(MGI(S)) ≤ 3 and r(MGI(S)) ≥ 2. Moreover, there
are ideals I of R with S = K + I is not Noetherian.
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Proof. Note that S satisfies a.c.c. on principal ideals and J(S) = (0). Consider any two different
M1,M2 ∈ Max(S). It is clear that I is an ideal of both R and S. Since K is a field and S

I
∼= K

as rings, I ∈ Max(S). By Lemma 4.7, there exist N1, N2 ∈ Max(R) with Ni ∩ S = Mi for
each i, 1 ≤ i ≤ 2. Note that N1 6= N2. As Max(R) satisfies (SC2) by Example 4.6, there exist
N3 ∈ Max(R) and Rπ,Rπ′ ∈ I(R) with π ∈ N1 ∩ N3 and π′ ∈ N2 ∩ N3. Now, N3 ∩ S is a
proper ideal of S and hence, there exists M3 ∈ Max(S) with N3 ∩ S ⊆ M3. If J is any non-zero
ideal of R, then JI is a non-zero ideal of both R and S and JI ⊆ J ∩ S and so, J ∩ S 6= (0).
Hence, Rπ ∩ S,Rπ′ ∩ S are non-zero proper ideals of S. Since, R is a UFD, Rπ,Rπ′ ∈ Spec(R)
and so, Rπ ∩ S,Rπ′ ∩ S ∈ Spec(S). As J(S) = (0) and S is atomic, there are Sξ, Sξ′ ∈ I(S)
with ξ ∈ Rπ ∩ S and ξ′ ∈ Rπ′ ∩ S. Note that Sξ ⊆ Rπ ∩ S ⊆ (N1 ∩ N3) ∩ S ⊆ M1 ∩M3 and
Sξ′ ⊆ Rπ′ ∩ S ⊆ (N2 ∩N3) ∩ S ⊆ M2 ∩M3. Thus given any two different M1,M2 ∈ Max(S),
there exist M3 ∈ Max(S) and Sξ, Sξ′ ∈ I(S) with ξ ∈ M1 ∩M3 and ξ′ ∈ M2 ∩M3. Hence,
Max(S) satisfies (SC2) and so, we obtain that MGI(S) is connected with diam(MGI(S)) ≤ 3
and r(MGI(S)) ≥ 2.

If I is a non-zero ideal of R with I ⊆ P for some P ∈ Spec(R)\Max(R), then we claim
that S is not Noetherian. Suppose that S is Noetherian. If a ∈ I\{0}, then aR ⊆ I ⊂ S. If S
is Noetherian, then as R ⊆ 1

a
S, we get that R is a finitely generated S-module. Hence, R is an

integral extension of S by (iii) ⇒ (i) of [1, Proposition 5.1]. This implies that R
I

is an integral
extension of S

I
. Since, S

I
∼= K as rings, we get that dim S

I
= 0 and so, dim R

I
= 0 by [6, 11.8].

Hence, we obtain that P ∈Max(R) and this contradicts the choice of P . This proves that S is not
Noetherian. With I = P = X1R, note that P ∈ Spec(R)\Max(R) and so, S = K + P is not
Noetherian.

5. Conclusion

For an atomic domain R with |Max(R)| ≥ 2, in this paper, we introduce the graph MGI(R)
and try to find out when MGI(R) is connected. In such a study, some necessary (respectively,
sufficient) conditions are determined such that MGI(R) is connected and we arrive at some prob-
lems for which I am not aware of their solutions. In this section, we mention some of them. Does
(1) ⇒ (2) of Proposition 3.16 hold even if Max(R) is not finite? Regarding the sufficient con-
ditions (SC1) and (SC2), in view of Lemma 4.1, it would be interesting to know whether or not
there exists an atomic domain R for which Max(R) satisfies (SC2) but does not satisfy (SC1).
The exact value of diam(MGI(K[X1, X2, . . . , Xn])) is not known.
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