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Abstract

A planar graph is said to be zonal when is possible to label its vertices with the nonzero elements
of Z3, in such a way that the sum of the labels of the vertices on the boundary of each zone is 0 in
Z3. In this work we present some conditions that guarantee the existence of a zonal labeling for a
number of families of graphs such as unicyclic and outerplanar, including the family of bipartite
graphs with connectivity at least 2 whose stable sets have the same cardinality; additionally, we
prove that when any edge of a zonal graph is subdivided twice, the resulting graph is zonal as well.
Furthermore, we prove that the Cartesian product G × P2 is zonal, when G is a tree, a unicyclic
graph, or certain variety of outerplanar graphs. Besides these results, we determine the number of
different zonal labelings of the cycle Cn.

Keywords: zonal graph, zonal labeling
Mathematics Subject Classification : 05C15, 05C30

1. Introduction

This work is motivated by a question proposed by Chartrand et al. [1]; in that monograph, they
introduce, to a wider audience, the concept of zonal labeling. A vertex labeling of a graph G is a
function f : V (G) → S, where S is a set of numbers; if G is a plane graph and R is a zone (or
region) of G, the label of R is the addition of the labels of the vertices that form its boundary. Let
G be a plane graph; the function ` : V (G) → {1, 2} is called a zonal labeling of G if the label
of each zone is 0 in Z3. A plane graph is zonal when it admits a zonal labeling. In Figure 1 we
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show a zonal labeling of an Archimedean graph, where the dark vertices are labeled 2 and the light
vertices are labeled 1 (or vice versa).

Figure 1. Zonal labeling of the rhombicuboctahedron

Let G be a graph of order n; suppose that ` is a zonal labeling of G, the labeling ` of G defined
by `(v) = 3 − `(v) for each v ∈ V (G) is also a zonal labeling of G. Indeed, suppose that F is
any zone of G and that its boundary, denoted by ∂F , has m vertices. Since ` is zonal, there exists
a positive integer ξ such that

∑
v∈∂F `(v) = 3ξ, then∑

v∈∂F

`(v) =
∑
v∈∂F

(3− `(v)) =
∑
v∈∂F

3−
∑
v∈∂F

`(v) = 3m− 3ξ = 3(m− ξ).

The function ` is called the complementary labeling of `. For the smallest cycles, we have that C3,
C4, and C5 only have two different zonal labelings, while C6 has three different zonal labelings;
the labelings of C6 are self complementary. In order to clarify this point, we show the labelings
of these cycles using the symbols x and y in cyclic notation, assuming that if x = 1, then y = 2
or vice versa. For C3: (x, x, x), for C4: (x, x, y, y) and (x, y, x, y); for C5: (x, x, x, x, y); for C6:
(x, x, x, y, y, y), (x, x, y, x, y, y), and (x, y, x, y, x, y).

Chartrand et al. [1] proved several results about this type of labeling. In particular, they proved
all the results in this introduction; we have included them for the sake of completeness and to
illustrate the arguments used to prove the existence of such a labeling.

Proposition 1.1. If T is a nontrivial tree, then T is zonal.

The proof of this result, given in [1], is very informative, that is the reason why we sketch it
here. Suppose that T is a tree of order n. A plane representation of T determines only one zone
which boundary is formed by all the vertices of T . If n ≡ 0(mod 3), then a zonal labeling of T is
obtained by assigning the label 1 to exactly 3k vertices, where 0 ≤ k ≤ n

3
; thus, the sum of the

vertex labels is 3k + 2(n − 3k) = 2n − 3k ≡ 0(mod 3). If n ≡ 1(mod 3), a zonal labeling is
obtained by assigning the label 2 to exactly 3k + 2 vertices, where 0 ≤ k ≤ n−4

3
; thus, the label

of the unique zone is 1(n − 3k − 2) + 2(3k + 2) = n + 3k + 2, which is zero in Z3. Finally, if
n ≡ 2(mod 3), a zonal labeling is obtained by assigning the label 2 to exactly 3k+1 vertices; thus,
the sum of the vertex labels is 1(n − 3k − 1) + 2(3k + 1) = n + 3k + 1, which is zero in Z3 as
well. Since the order is the only parameter of T used to obtain the zonal labeling, we can replace
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T with a forest, and the results is still valid. If T has order 1, a zonal labeling fails to exist because
the unique vertex can be labeled 1 or 2, and neither of them is 0 in Z3.

Equally important, is the fact that all cycles are zonal graphs. The relevance of this result can
be seen in the fact that, for many graphs, the boundary of each zone is a cycle.

Proposition 1.2. If C is a cycle, then C is zonal.

As we did before, we do not prove this result, but provide a sketch of a procedure used to obtain
a zonal labeling of Cn+1 if a zonal labeling of Cn is known. The following definitions are taken
from the work of Gross [2]. Let w be a vertex of a graph G, NG(w) be the neighborhood of w,
and let U and V be disjoint nonempty subsets of V (G) such that U ∪ V = NG(w). In the graph
G − w, let every vertex of U be joined to a new vertex u and let every vertex of V be joined to
a new vertex v, and join the vertices u and v. This operation is called splitting graph G at vertex
w, and the resulting graph is called a split of the graph G at the vertex w. The vertex w is called
the split vertex. Since the selection of U and V is arbitrary, the outcome of splitting a vertex is not
necessarily unique. For n ≥ 3, the cycle Cn+1 is obtained by splitting any vertex of Cn because
Cn is 2-regular. This fact can be used to obtain a zonal labeling of C3n+1 and C3n+2 starting with
a zonal labeling of C3n. Since the boundary of the two zones determined by C3n has 3n vertices, a
zonal labeling can be attained by assigning the label 2 to every vertex of the cycle. If any vertex of
C3n is split to obtain C3n+1 and the new vertices are labeled 1, then the sum of all the vertex labels
that form the boundary is still 3n which is 0 in Z3. We repeat the process by splitting any vertex
labeled 2 in C3n+1 to get a zonal labeling of C3n+2.

Remark 1.1. Let ` be any zonal labeling of Cn; we denote by r the number of vertices labeled 1
and by s = n − r the number of vertices labeled 2. Thus, r + 2(n − r) = 2n − r is the label of
each zone determined by Cn; but this number is 0 in Z3 if and only if n + r ≡ 0(mod 3). In other
terms,

• If n ≡ 0(mod 3), then r, s ≡ 0(mod 3).

• If n ≡ 1(mod 3), then r, s ≡ 2(mod 3).

• If n ≡ 2(mod 3), then r, s ≡ 1(mod 3).

Therefore, for any value of n > 3, there is a zonal labeling of Cn that uses at least once the
label 2.

In [1], Chartrand et al. also studied the subfamily of cubic graphs formed by the prismsCn×P2,
proving that each member of this family is zonal.

Proposition 1.3. The prism Dn = Cn × P2 is zonal.

After this result, Chartrand et al. [1] characterized the family of connected zonal cubic graphs.

Theorem 1.1. A connected cubic plane graph G is zonal if and only if G is bridgeless.

Motivated by these results, Chartrand et al. [1] posed the following question:
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Question. Which connected plane graphs are zonal?

This question is the principal motivation for the present work; here we consider some classes of
planar graphs under the perspective of zonal labelings. The results included in Section 2 generalize
some of the propositions presented above; in particular, we give some conditions for a bipartite
graph to be zonal, characterize the zonal unicyclic graphs, study a variation of zonal labelings for
the class of triangulations. In Section 3 we present new results about zonal labelings of outerplanar
graphs. In Section 4 we extend the conclusions about the Cartesian product given in [1], by proving
that G × P2 is zonal when G is a tree, zonal outerplanar graph, unicyclic graph, or a 2-connected
bipartite graph which stable sets have the same cardinality. We close this work in Section 5, where
the concepts of zonal coloring of a cycle and bracelet are connected, in addition we determine the
number of zonal colorings of Cn that use the label 1 exactly r times.

2. Extensions of Previous Results

In this section we study the existence of a zonal labeling for certain families of graphs, in
particular we characterize the family of zonal unicyclic graphs, and use the concept of inner zonal
labeling (introduced in [1]) to prove that every triangulation is zonal and every near-triangulation
is inner zonal; we also consider the family of 2-connected bipartite graphs whose stable sets have
the same cardinality, proving that they form a family of zonal graphs. Furthermore, we prove that
if any edge of a zonal graph is subdivided twice, then the resulting graph is zonal.

Proposition 2.1. If G is a 2-connected bipartite graph with both stable sets of cardinality n, then
G is zonal.

Proof. Suppose that G is a 2-connected bipartite graph of order 2n, whose stable sets, denoted by
S1 and S2, have the same cardinality. Let ` : V (G) → {1, 2} be a labeling of G, where `(v) = i
for each v ∈ Si. Since G is 2-connected, every vertex of G is a vertex of at least one cycle of G.
The fact that G is bipartite guarantees that very cycle of G has even order; therefore, the label of
any cycle of G is 0 in Z3 because half of its vertices are labeled 1 and the other half are labeled 2.
Consequently, ` is a zonal labeling of G.

An interesting family of graphs that satisfy the hypotheses of this last proposition, is formed
by the polyominoes. A polyomino is a plane graph, obtained via edge amalgamation, of copies of
the cycle C4 (each copy of C4 is called cell), in such a way that any two cells are disjoint or share
an edge. A well-known example of polyomino is the grid graph Pn × Pm. As an extension of the
concept of polyomino we have polyhexes; in a polyhex each cell is an hexagon (the cycle C6). This
type of graph also satisfies the hypotheses of the last proposition. Thus, honeycombs are zonal
graphs too.

Recall that the girth of a connected graph, other than a tree, is the length of any of its shortest
cycles. In the next proposition we present a characterization of the unicyclic graphs of order n and
girth g. Within the proof of this proposition, we assume that if G is a unicyclic graph, then all
bridges of G are edges of the boundary of the exterior zone, i.e., the boundary of the exterior zone
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includes all vertices of G, or the boundary of the interior zone is a cycle. Before the proposition,
we prove that all unicyclic graphs of order n and girth n− 1 are not zonal.

Lemma 2.1. If G is a unicyclic graph of order n and girth n− 1, then G is not zonal.

Proof. By contradiction. Suppose that ` is a zonal labeling of G. Any plane representation of G
determines two zones, one of these zones has by boundary the cycle Cn−1. Thus, if v1, v2, . . . , vn
are the vertices ofG and vn is the only vertex of degree 1, then `(v1)+`(v2)+ · · ·+`(vn) = 3ξ, for
some ξ ∈ N. Since `(vn) is either 1 or 2, then `(v1) + `(v2) + · · ·+ `(vn−1) is not a multiple of 3.
Therefore, one of the two zones has a label other than 0, but this is a contradiction. Consequently,
G is not zonal.

The subfamily of unicyclic graphs of order n and girth n−1 constitutes the only instance where
a unicyclic graph is not zonal. We prove this statement in the coming proposition.

Proposition 2.2. A unicyclic graph of order n and girth g is zonal if and only if n− g 6= 1.

Proof. Let G be a unicyclic graph of order n and girth g. Suppose that G is zonal; by Lemma
2.1 we know that n − g 6= 1. Suppose now that n − g 6= 1. If n − g = 0, then G is a cycle;
consequently G is zonal. If n− g > 1, then the interior zone determined by G has by boundary the
unique cycle of G, then we label this cycle using any of its zonal labelings. On the boundary of the
exterior zone, there are n − g > 1 vertices that have not been labeled; the graph induced by these
vertices is a forest of order at least 2, this forest can be labeled following the method described in
Proposition 1.1. Thus, the sum of the labels of all these vertices is 0 in Z3; consequently, the label
of the exterior zone is 0 in Z3, which implies that the labeling of G is zonal.

In Figure 2 we show an example of a zonal labeling for a unicyclic graph G of order n = 33
with girth g = 8. In order to simplify the picture, we assume that the label 2 is assigned on each
dark vertex, while the label 1 is assigned on each light vertex, or vice versa. Thus, the label of the
interior zone is 2 · 1 + 1 · 7 = 9 and the label of the exterior zone is 2 · 3 + 1 · 30 = 36. Since 9 and
36 are 0 in Z3, this is a zonal labeling of G.

Figure 2. Zonal labeling of a unicyclic graph of order 33 and girth 8

There are two other families of planar graphs, cubic and bicubic maps, studied by Chartrand
et al. [1]. A cubic map is a connected bridgeless cubic planar graph embedded in the plane. They
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proved that every cubic map has a zonal labeling. A bicubic map is a 2-connected planar graph
embedded in the plane all of whose vertices have degree 2 or 3, where the boundary of the exterior
region is a cycle C and every vertex lying interior to C has degree 3. For a bicubic map B, a
labeling of the vertices of B with the nonzero elements of Z3 is an inner zonal labeling if the label
of each interior zone is 0 in Z3. Any bicubic map that admits such a labeling is called inner zonal.
Chartrand et al [1] asked the following question.

Question. Which bicubic maps are inner zonal?

Certainly, not all bicubic maps are zonal; for example, if any edge of the complete graph K3 is
subdivided once, we get a bicubic map that is not zonal. On the other side, derived from the proof
of Proposition 2.4, we have an entire family of zonal bicubic maps; this family is formed by all
graphs obtained by subdividing, an even number of times, any number of edges , on the boundary
of the exterior zone of the prism Cn × P2.

A plane triangulation is a connected simple plane graph G, such that every zone of G is tri-
angular. A plane graph G is a near-triangulation, if G is 2-connected and every zone of G is
triangular, except possibly the unbounded zone.

Proposition 2.3. Every triangulation is zonal. Every near-triangulation is inner zonal.

Proof. Recall that the cycle C3 has only two zonal labelings, where all vertices have the same
label, either 1 or 2. This implies that if we want to obtain a zonal labeling of a triangulation or a
near triangulation, all vertex labels are equal, either 1 or 2. The exterior face of a triangulation has
boundary C3, implying that its label is 0 in Z3. In the case of a near triangulation, the order of the
exterior zone is not always divisible by 3; if it is, then the near-triangulation is zonal, otherwise, it
is inner zonal, because the label of each interior zone is 0 in Z3.

Consider the five Platonic graphs, the tetrahedron, octahedron, and icosahedron are triangula-
tions, while the cube and dodecahedron (as well as the tetrahedron) are bridgeless cubic graphs.
Therefore, all Platonic graphs are zonal. A different situation appears with the Archimedean
graphs, that is, those graphs formed by the vertices and edges of the Archimedean solids. There
are thirteen of these graphs, seven are bridgeless cubic, therefore they are zonal; of the remain-
ing six, only the rhombicuboctahedron is zonal (as shown in Figure 1), four of the remaining five
contain, as induced subgraph, either M1 or M2 (depicted in Figure 5), which are not zonal nor
inner zonal (as proven in Section 3). The fact that the remaining case, the rhombicosidodecahe-
dron, is not zonal nor inner zonal, is due to the factuality that the cycle C5, that is the boundary
of several zones, only have two zonal labelings, any of these labelings forces the labeling of the
adjacent zones. In addition to these thirteen graphs, there are two graph families whose members
are Archimedean graphs: prisms and antiprisms. All prisms are zonal, while antiprisms are zonal
only when the order of the outerzone is a multiple of 3, otherwise they are inner zonal.

A subdivision of an edge e = uv of a graph G is obtained by replacing e with a new vertex w
and two new edges uw and wv. Two graphs are said to be homeomorphic if both can be obtained
from the same graph by subdivisions of some edges. Suppose that G1 and G2 are homeomorphic
and G1 is zonal; is G2 also zonal? In the following proposition we provide a partial answer to this

98



www.ijc.or.id

Zonal labeling of graphs | C. Barrientos and S. Minion

question. We say that the edge e is subdivided an even number of times when it is replaced with
the path P2r, which consecutive vertices are w1, w2, . . . , w2r, and two new edges uw1 and w2rv.
For example, a zonal labeling of C2n+1 or C2n can be obtained by subdividing, an even number of
times, any edge of C3 or C4, respectively. In the following result we prove that a zonal graph is
obtained when any edge of a zonal graph is subdivided an even number of times.

Proposition 2.4. If any edge of a zonal graph G is subdivided an even number of times, then the
resulting graph is zonal.

Proof. Suppose that G is a zonal graph and e = uv is an edge of G. Let G′ be the graph obtained
from G by subdividing 2r times the edge e. Assuming that G is labeled using a zonal labeling,
any zone that includes e on its boundary has a label that is 0 in Z3. When the labels 1 and 2
are evenly distributed among the 2r vertices introduced by the subdivision, the label of any zone,
which boundary includes the vertices u and v, is also 0 in Z3. Therefore, G′ is zonal.

Chartrand et al. [1] proved that the prism Dn = Cn × P2 is zonal. The standard plane rep-
resentation of Dn has the cycle Cn as the boundary of the exterior zone. If the any edge on this
cycles is replaced by a path of odd length, where the interior vertices of this path are labeled as was
done in Proposition 2.4, we get a zonal graph homeomorphic to Dn. Clearly this process can be
done on any number of edges on the boundary of the exterior zone, with exactly the same result.
Therefore, the graph obtained with these subdivisions is a zonal bicubic map. In Figure 3 we show
two examples of a zonal labeling for the bicubic maps obtained by subdividing, an even number of
times, every edge of the outer rim of the prisms D5 and D4.

Figure 3. Zonal labelings of bicubic maps homeomorphic to D5 and D4, respectively

3. Zonal Labelings of Outerplanar Graphs

A robust family of plane graphs is formed by the outerplanar graphs. An outerplanar graph
is a graph with an imbedding in the plane such that every vertex appears on the boundary of the
exterior zone. Suppose that G is an outerplanar graph of order n and size m; based on propositions
1.2 and 2.3, we know that for every n ≥ 3, the graphG is zonal whenm = n, and in the case where
m = 2n− 3, G is zonal if n is a multiple of 3 and inner zonal otherwise. The last result introduced
in [1] includes the family of outerplanar graphs with maximum degree 3; there, Chartrand et al.
proved that any member of this family is inner zonal. In the following proposition we stated this
result keeping the terminology used in [1].
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Theorem 3.1. Every plane graph G with ∆(G) ≤ 3 where the boundary cycle of the exterior zone
is a Hamiltonian cycle of G is inner zonal.

Thus, we need to study the existence of a zonal labeling for all outerplanar graphs of order n
and size n + 1 ≤ m ≤ 2n − 4. We assume that v1, v2, . . . , vn are the consecutive vertices of the
boundary of the exterior zone determined by G. We start this study with the interesting case where
m = n+ 1.

Proposition 3.1. Let G be an outerplanar graph of order n and size m = n + 1. If G has an
interior zone with boundary C3, then G is not zonal.

Proof. Since G has order n and size n + 1, G has only one chord. Suppose that v1v3 ∈ E(G)
and that R1, R2 and R3 are the zones determined by G, being R1 the zone with boundary v1, v2, v3
and R3 the exterior zone, then the boundary of R2 has order n − 1. We proceed by contradiction.
Suppose that ` is a zonal labeling ofG, without loss of generality we assume that the vertices v1, v2
and v3 are labeled 1. When ` is restricted to the boundary of R2 we get that `(v1) + `(v3) + `(v4) +
. . . ,+`(vn) = 3ξ, for some ξ ∈ N. This implies that `(v1) + `(v2) + . . . ,+`(vn) is not a multiple
of 3 because `(v2) = 1, which is a contradiction. Consequently, G is not zonal.

For i ∈ {1, 2}, let Gi be a zonal graph of order ni and ei = uivi be an edge of Gi that lies
on the boundary of the exterior zone determined by Gi. The edge amalgamation of G1 and G2,
denoted by G1 � G2, obtained by identifying the edges e1 and e2, is a planar graph G of order
n = n1 + n2 − 2. We want to investigate the conditions on G1 and G2 that make G a zonal graph.
We start assuming that each Gi is a cycle; based on Proposition 3.1, we know that if Gi is any
cycle and G2

∼= C3, then G is not zonal. However, if none of these graphs is a copy of C3, then G
is zonal as we prove next. Before that, in Table 1 we exhibit the values in Z3 of n = n1 + n2 − 2
and s = s1 + s2− 1, for the different combinations of n1, n2, s1, and s2, where si is the number of
vertices of Gi labeled 2 by a zonal labeling.

Cn1 � Cn2 (n2 ≡ 0, s2 ≡ 0) (n2 ≡ 1, s2 ≡ 2) (n2 ≡ 2, s2 ≡ 1)

(n1 ≡ 0, s1 ≡ 0) (n ≡ 1, s ≡ 2) (n ≡ 2, s ≡ 1) (n ≡ 0, s ≡ 0)
(n1 ≡ 1, s1 ≡ 2) (n ≡ 2, s ≡ 1) (n ≡ 0, s ≡ 0) (n ≡ 1, s ≡ 2)
(n1 ≡ 2, s1 ≡ 1) (n ≡ 0, s ≡ 0) (n ≡ 1, s ≡ 2) (n ≡ 2, s ≡ 1)

Table 1. The values in Z3 of n = n1 + n2 − 2 and s = s1 + s2 − 1

Proposition 3.2. If G1 and G2 are cycles other than C3, then the edge amalgamation of G1 and
G2 is zonal.

Proof. For each i ∈ {1, 2}, let Gi be the cycle Cni
where ni ≥ 4. This last condition implies that

there exists a zonal labeling of Cni
that assigns ri > 0 times the label 1 and si > 0 times the label

2. Therefore, there is an edge on each Cni
which extremes are labeled 1 and 2. We amalgamate

these cycles identifying these edges in such a way that the vertices with the same label are merged.
We denote byG the graph obtained from this edge amalgamation, i.e.,G = Cn1 �Cn2 . If s denotes
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the number of vertices labeled 2 in G, then s = s1 + s2 − 1. In Table 1 we found the different
combinations of s1 and s2 and the value of the corresponding s in Z3. Thus, the value of s, and
consequently the value of r = r1 + r2 − 1, corresponds exactly to the amount of vertices labeled
2 and 1, respectively, by a zonal labeling of a graph of order n, as it was described in Remark 1.1.
Therefore, the graph G is zonal.

Remark 3.1. If G1
∼= C3 and G2 is any cycle, the edge amalgamation G1 � G2 is inner zonal,

because there exists a zonal labeling of G2 that assigns the label 1 to the end-vertices of an edge
that can be amalgamated with an edge of G1.

In the last proposition, we used the fact that each Gi is not a triangle to guarantee the existence
of a zonal labeling of Gi that assigns the labels 1 and 2 on its vertices; in other terms, to be sure
that Gi has an edge whose end-vertices are labeled 1 and 2. Triangulations are planar graphs
which zonal labelings only use one of the two possible labels; in other terms, G1 and G2 cannot be
triangulations neither. In the next proposition, we extend the result presented in Proposition 3.2.

Proposition 3.3. For i ∈ {1, 2}, let Gi be a zonal graph. If there exists a zonal labeling of each
Gi, that assigns the labels 1 and 2 on the vertices that form the boundary of the exterior zone, then
there is an edge amalgamation of G1 and G2 that is zonal.

Proof. For i ∈ {1, 2}, let `i be a zonal labeling of a graph Gi and let ∂i be the boundary of the
exterior zone of Gi. Suppose that ni is the order of ∂i and that `i assigns the label 1 to ri vertices of
∂i and the label 2 to the remaining si vertices of ∂i, where ri and si are positive integers. Suppose
that ei = uivi is an edge in ∂i such that `i(ui) = 1 and `i(vi) = 2. Thus, the addition of the vertex
labels on V (∂i) − {ui, vi} is zero in Z3. In other terms, the label of the exterior zone of G1 � G2

is zero in Z3. Since the interior zones of each Gi are not affected by the amalgamation, we have
obtained a zonal labeling of an edge amalgamation of G1 and G2.

Recall that for an outerplanar graph of order n, we have denoted by v1, v2, . . . , vn the consec-
utive vertices of the boundary of the exterior zone. In the next proposition we deal with a class of
outerplanar graphs of order n and size n+ χ− 2, where the subgraph induced by v1, v2, . . . , vχ is
a near-triangulation.

Proposition 3.4. Let G be an outerplanar graph of order n with χ − 2 chords such that the
subgraph induced by v1, v2, . . . , vχ is a near-triangulation. The graph G is zonal if and only if
χ ≡ 2(mod 3).

Proof. Since the subgraph of G induced by v1, v2, . . . , vχ is a near-triangulation of order χ, then
it has χ − 3 chords. Consequently, the subgraph induced by the vertices v1, vχ, vχ+1, . . . , vn is a
cycle; we denote this cycle by C.

Suppose that G is zonal; without loss of generality we assume that there exists a zonal la-
beling ` of G such that `(v1) = `(v2) = · · · = `(vχ) = 1. The zone R, with boundary
v1, vχ, vχ+1, . . . , vn, v1 has label 0 in Z3. Thus

n∑
i=1

`(vi) ≡ 0(mod 3) and `(v1) +
n∑
i=χ

`(vi) ≡ 0(mod 3).
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Then, `(v2) + `(v3) + · · ·+ `(vχ−1) ≡ 0(mod 3). Since `(vi) = 1 for each 2 ≤ i ≤ χ− 1, we get
that χ− 2 = 3ξ for some integer ξ. Hence, χ ≡ 2(mod 3).

Suppose now that χ ≡ 2(mod 3). Since the subgraph of G induced by v1, v2, . . . , vχ is a near-
triangulation, we have that in any possible zonal labeling of G, all these vertices must have the
same label, either 1 or 2. Let ` be a zonal labeling of C that assigns the label 1 at least twice.
We assume that `(v1) = `(vχ) = 1. Thus, 2 +

∑n
i=χ+1 `(vi) = 3σ for some integer σ. Because

χ ≡ 2(mod 3),

χ+
n∑

i=χ+1

`(vi) = 3σ + χ− 2 = 3κ ≡ 0(mod 3)

for some integer κ. Consequently, the label of each zone determined by G is 0 in Z3 and G is
zonal.

In the following result, we use the fact that the maximum size of an outerplanar graph of order
n is 2n − 3. The following proposition considers the class of outerplanar graphs of order n and
size 2n− 4.

Proposition 3.5. For each i ∈ {1, 2}, let Gi be an outerplanar graph of order ni and size 2ni− 3,
and ei = uivi be any edge on the boundary of the exterior zone of Gi. The outerplanar graph
G, obtained from G1 and G2 by adding the edges u1u2 and v1v2, is zonal if and only if n1 ≡
n2(mod 3).

Proof. Since Gi has order ni and size 2ni − 3, Gi is a near-triangulation; by Proposition 2.3 we
know that Gi is inner zonal. An inner zonal labeling of Gi is obtained by assigning the label 1 (or
the label 2) to every vertex of Gi.

Suppose that G is zonal. The zone with boundary u1, u2, v2, v1 has label 0 in Z3. This label is
achieved by assigning the label 1 to exactly two of these vertices. But both G1 and G2 are inner
zonal; this implies that all vertex labels on G1 must be 1 and all vertex labels on G2 must be 2, or
vice versa. Either way, ui and vi have the same label. Thus, the label of the exterior zone of G
is n1 + 2n2 ≡ 0(mod 3). In Table 2 we show the equivalence class of n1 + 2n2 in Z3 for all the
combinations of n1 and n2. Since n1 + 2n2 ≡ 0(mod 3), we conclude that n1 ≡ n2(mod 3).

n1 + 2n2 n2 ≡ 0(mod 3) n2 ≡ 1(mod 3) n2 ≡ 2(mod 3)

n1 ≡ 0(mod 3) 0 2 1
n1 ≡ 1(mod 3) 1 0 2
n1 ≡ 2(mod 3) 2 1 0

Table 2. The values of n1 + 2n2 in Z3

Suppose now that n1 ≡ n2(mod 3). We use onGi the inner zonal labeling that assigns the label
i to each of its vertices. In this way, each internal zone of Gi has label 0 in Z3. The vertices u1 and
v1 of G1 have label 1, while the vertices u2 and v2 of G2 have label 2; consequently, the zone with
boundary u1, u2, v2, v1 has label 0 in Z3 because n1 ≡ n2(mod 3). Furthermore, the label of the
exterior zone of G is n1 + 2n2 ≡ 0(mod 3) because n1 ≡ n2(mod 3). Therefore, G is zonal.
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Note that the outerplanar graph G obtained in this last proposition has order n and size 2n− 4.
In Figure 4 we show an example of this construction where n1 = 8 and n2 = 5.

Figure 4. Zonal labeling of a graph obtained by connecting, with 2 edges, two maximal outerplanar graphs whose
orders are equivalent in Z3

Consider the graph M1 in Figure 5. Assume that M1 is zonal, then every vertex on a triangular
zone has the same label (or color). Since the zones R1 and R2 share a vertex, the labels on the
boundaries of these two zones are identical. The boundary ofR3 is the cycle C4, any zonal labeling
of C4 must use both labels twice, but this is not possible in the case of M1 because R3 has three
vertices with the same label; thus, regardless of the label that could be used on the still unlabeled
vertex of R3, the label of this zone is not 0 in Z3, which is a contradiction. Therefore, M1 is not
zonal nor inner zonal. Using the catalog of outerplanar graphs of order up to 9 in [4], we found
that M2 and M3, shown in Figure 5, are the only outerplanar graphs of order 8 that are not zonal
nor inner zonal and do not have M1 as an induced subgraph. Indeed, given that the vertices on
the boundary of the highlighted zone, must have the same label, and the other vertices need to be
labeled in the way shown (or its complement), the zone R cannot have label 0 in Z3. Therefore,
both graphs are not zonal nor inner zonal.

M1 : R1 R2

R3

R4

M2 : M3 :R R

Figure 5. Neither zonal nor inner zonal outerplanar graphs of order 6 and 8

Based on these observations, the proof of the following result is straightforward and it is omit-
ted.

Proposition 3.6. Any outerplanar graph that contains M1, M2, or M3, as an induced subgraph, is
neither zonal nor inner zonal.

In Figure 6 we show all outerplanar graphs of order 9 that are neither zonal nor inner zonal;
the graphs on the ith row have Mi as an induced subgraph. A question, that raises naturally in this
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context, is whether or not there exists an outerplanar graph of order n ≥ 10 and size m ≥ n + 2
that is neither zonal nor inner zonal and does not contain any of the Mi as an induced subgraph.

Figure 6. Not zonal nor inner zonal outerplanar graphs of order 9

Consider, for example, the outerplanar graph in Figure 7, this graph has order n = 12 and size
2n − 3 = 21; the 9 chords are classified into three groups: if the thicker solid chord (in blue) is
deleted, the resulting graph is zonal; when any of the regular solid chords (in green) is erased, the
resulting graph is inner zonal; if any of the dashed chords (in red) is removed, the resulting graph
contains the graph M1 as an induced subgraph, then it is neither zonal nor inner zonal. In other
terms, Proposition 3.5 is the essential tool to characterize zonal outerplanar graphs of order n and
size 2n−4. This characterization can be described in the following terms: Let G be an outerplanar
graph of order n and size 2n − 3, and let e = v1vj be a chord of G, where i < j. The graph
G′ = G− e is zonal if and only if vi−1vj and vivj−1 are chords of G and the removal of the edges
vi−1vi, vj−1vj of G′ results in two graphs G1 and G2 such that the order of G1 is equivalent to the
order of G2 in Z3.

Figure 7. Different types of chords within an outerplanar graph of maximum size
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Summarizing, within the family of outerplanar graphs, we encounter zonal and inner zonal
graphs, and others that are neither zonal nor inner zonal. We conclude this section with the follow-
ing questions.

Question. In addition to the graphs shown in Figure 5, are there more forbidden subgraphs?

Question. Which outerplanar graphs are zonal?

4. Zonal Graphs and the Cartesian Product

As mentioned in the Introduction, Chartrand et al. [1] studied the Cartesian product of cycles
and the path P2, showing that G = Cn × P2 is zonal for all n ≥ 3. There are two copies of Cn in
G, these copies are labeled with complementary zonal labelings; in this way, each vertex label is
used the same number of times. Two of the zones determined by G have boundary Cn, while the
remaining n zones have boundary C4. The labeling on each Cn is zonal as well as the labelings
of each copy of C4 because two of its vertices are in the first copy of Cn and the other two are in
the other copy; since the labelings used on both copies of Cn are complementary, each C4 has two
vertices labeled 1 and two vertices labeled 2, then the labeling of each C4 in G is zonal.

In the following results we use the same technique to prove that G × P2 is zonal when G is
either a tree or an outerplanar graph.

Proposition 4.1. If T is any tree, then T × P2 is zonal.

Proof. Let T be any tree of order n ≥ 1 and let ` : V (T )→ {1, 2} be any labeling of T . The first
copy of T in T × P2 is labeled using the function ` while the second copy of T is labeled using `,
where `(v) = 3− `(v) for each v ∈ V (T ). In this way, the 2n vertices of T ×P2 are labeled either
1 or 2, and each vertex label is used exactly n times. The boundary of any zone R determined by
T × P2 is a cycle of order 2k for some k ≥ 2; since each copy of T contributes k vertices to the
boundary of any zone and the labelings on each copy of T are complementary, we have that there
are k vertices labeled 1 and k vertices labeled 2; therefore, the label of R is k + 2k = 3k, which is
0 in Z3. In consequence, T × P2 is zonal.

In Figure 8 we show a zonal labeling for T × P2, where T is a tree of order 24. Note that
different representations of T can produce regions of different order; we must also observe that the
labeling of each copy of T is not required to be zonal. The reason why we can use any labeling on
T that assigns the labels 1 and 2 is that a plane representation of T only produces one zone.

In the next proposition we consider the Cartesian product of any zonal outerplanar graph and
the path P2.

Proposition 4.2. If G is a zonal outerplanar graph, then G× P2 is zonal.

Proof. Let G be an outerplanar graph and let ` be a zonal labeling of the first copy of G in G×P2.
The second copy is labeled using its complementary labeling `. Thus, the label on all the interior
zones determined by each copy of G is 0 in Z3. The same occurs with any zone which boundary
is formed by two adjacent vertices of the first copy with their corresponding replicas in the second
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Figure 8. Zonal labeling of the Cartesian product T × P2, where T is a tree of order 24

copy. If the vertices on the boundary of the exterior zone determined by each copy of G lay on a
straight line with the chords represented by arcs, drawn above this line on the first copy and below
this line on the second copy, we obtain a plane representation of G × P2, where the boundary of
the exterior zone is the cycle C4, being its label 0 in Z3. Therefore, G× P2 is zonal.

In Figure 9 we show an example of a zonal labeling for a graph G × P2, where G is an out-
erplanar graph of order 8 and size 11. The drawing of G × P2 follows the directions given in the
proof of Proposition 4.2.

Figure 9. Zonal labeling of the Cartesian product of an outerplanar graph of order 8 and P2

The same technique used to obtain the zonal labeling of the previous Cartesian products can
be used when G is a unicyclic graph. This can be seen on the graph in Figure 8; connecting the
end-vertices of the longest paths on each copy of T , i.e., the paths where the branches of each tree
are attached, a unicyclic graph is obtained from each copy of T . In the concrete case of the graph in
Figure 8, the cycle obtained by adding the new edge has order 10 and its label is 0 in Z3. Because
of the similarity with the two previous results, we state with no proof the fact that G× P2 is zonal
when G is unicyclic.

Proposition 4.3. If G is a unicyclic graph, then G× P2 is zonal.

As we mentioned in the introduction, the prism Dn = Cn × P2 is zonal. This graph fits in the
category of cubic graphs studied in [1]. The technique used to prove that G × P2 is zonal, can be
extended to demonstrate that the plane graph Cn × Pm is zonal.

Proposition 4.4. The graph Cn × Pm is zonal for every m ≥ 2.
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Proof. The fact that Cn × P2 is zonal was proven in [1]. Assume that m > 2. For each i ∈
{1, 2, . . . ,m}, let vi1, v

i
2, . . . , v

i
n be the consecutive vertices of the ith copy of Cn used to build

Cn × Pm, where vij is connected to vi+1
j . If ` is any zonal labeling of Cn, then for every 1 ≤ i ≤

m−1, the copyCi ofCn is labeled using `while the copyCi+1 is labeled using the complementary
labeling `. Thus, the zones with boundary Cn have a label that is 0 in Z3. Any zone with boundary
C4, that is, determined by the vertices vij, v

i
j+1, v

i+1
j+1, and vi+1

j , has two vertex labels equal to 1
and two vertex labels equal to 2, regardless of the labelling `, then its label is 0 in Z3. Therefore,
Cn × Pm is zonal.

5. Bracelets and Zonal Cycles

A binary string of length n is a sequence of n elements of Z2; usually, each of the entries of
such a sequence is called bead. Let S1 and S2 be two of these strings, S1 and S2 are said to be
equivalent if S2 can be obtained by rotating the beads of S1. A necklace is any of the elements
of the equivalence classes induced by this relation. If, in addition, we admit that S1 and S2 are
equivalent when S2 is a reflection of S1, then a necklace is called a bracelet. Thus, in our context,
a bracelet is a circular arrangement of n beads of two different colors, i.e., the elements of Z2.
The number of different types of necklaces and bracelets has been widely studied. The On-line
Encyclopedia of Integer Sequences includes more than 1200 entries associated to necklaces and/or
bracelets.

In a zonal labeling of the cycle Cn, we may understand the vertex labels as two different colors;
thus, each zonal labeling of Cn corresponds to a bracelet, where the number 1 in Z3 is the number
1 in Z2 and the number 2 in Z3 is the number 0 in Z2.

Suppose that the cycleCn has been zonally labeled. Recall that r denotes the amount of vertices
of Cn labeled 1, where 0 ≤ r ≤ n; as we mentioned in the introduction,

r ≡


0(mod 3) if n ≡ 0(mod 3),

2(mod 3) if n ≡ 1(mod 3),

1(mod 3) if n ≡ 2(mod 3).

In other terms, n + r ≡ 0(mod 3). For a fixed value of n ≥ 3, let R = {r : n + r ≡ 0(mod 3)}.
Sequence A052307 in OEIS gives the number T (n, r) of bracelets with n beads, r of which are
white (or 1) and n− r are black (or 2). Consequently, T (n, r) is the number of zonal labelings of
Cn that use exactly r times the label 1, where

T (n, r) =
1

2

(
C
(
bn
2
c − (r mod 2)(1− (n mod 2)), b r

2
c
)

+ 1
n

∑
d∈D φ(d)C(n

d
, r
d
)
)
,

being D = {d : d
∣∣gcd(n, r)}, φ(d) is Euler totient function, and C(p, q) denotes the binomial

coefficient. With all these facts, the proof of the following result is straightforward.
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Proposition 5.1. The number of zonal labelings of the cycle Cn is

z(n) =
∑
r∈R

T (n, r).

In Table 3 we show the values of z(n), for 3 ≤ n ≤ 32.

n z(n) n z(n) n z(n) n z(n) n z(n)

3 2 9 16 15 410 21 16,992 27 831,256
4 2 10 26 16 750 22 32,303 28 1,602,026
5 2 11 42 17 1370 23 61,470 29 3,090,926
6 5 12 76 18 2565 24 117,574 30 5,973,644
7 6 13 126 19 4770 25 225,062 31 11,556,534
8 10 14 229 20 9004 26 432,286 32 22,386,350

Table 3. Number of zonal labelings of Cn
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