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Abstract

A vertex k-labelling ¢ : V(G) — {1,2, ..., k} is called irregular k-labeling of the graph G if for
every two different edges e and f, there is wy(e) # wy(f); where the weight of an edge is given
by e = zy € E(G) is wy(zy) = ¢(z) + ¢(y). The minimum k for which the graph G has an edge
irregular k-labelling is called edge irregularity strength of GG, denoted by es(G).

In the paper, we determine the exact value of the edge irregularity strength of caterpillars, n-star
graphs, (n, t)-kite graphs, cycle chains and friendship graphs.
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1. Introduction and preliminary results

The graph labeling has caught the attention of many authors and many new labeling results
appear every year. This popularity is not only due to the mathematical challenges of graph labeling,
but also for the wide range of its application, for instance X-ray, crystallography, coding theory,
radar, astronomy, circuit design, network design and communication design. Bloom and Golomb
studied applications of graph labelings to other branches of science [10, 11].
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All the graphs in this paper are finite, undirected and simple. For a graph G, the V(G) and
E(G) denote the vertex set and edge set, respectively. A labeling of a graph G is any mapping that
sends some set of graph elements to a set of non-negative integers. If the domain is vertex set or
the edge set, the labeling is called vertex labelings or edge labelings, respectively. Moreover, if the
domain is V' (G) U E(G), then the labeling is called a fotal labeling. Thus for an edge k-labeling,
¢: E(G) — {1,2,...,k}, the associated weight of a vertex = € V(G) is

wy () = Bo(ry)

where the sum is taken over all the vertices y adjacent to x.

Chartrand et al. in [6] introduced edge k— labeling of a graph G such that wy(x) # we(y) for
all vertices z,y € V(G) with x # y. Such labelings were called irregular assignments and the
irregularity strength s(G) of a graph G is known as the minimum k& for which G has irregular
assignments using labels atmost k. Some results on irregularity strength s(G) of a graph G can be
foundin[1, 3,6, 7,8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

Let ¢ be a vertex labeling of a graph G. Then we define the edge weight of zy € E(G) to be
w(zy) = ¢(x) + ¢(y). A vertex labeling ¢ : V(G) — {1,2,...,k} is called k— labeling. Ali et
al. in [2] introduced vertex k— labeling ¢ of a graph G such that wy(e) # wy(f) for every two
different edges e and f. Such a labeling were called an edge irregular £— labeling of the graph
G. The minimum £ for which the graph GG has an edge irregular £— labeling is called the edge
irregularity strength of GG, denoted by es(G).

They gives a lower bound of the parameter es(G) and determine the exact values of the edge
irregularity strength for several family of graphs namely, paths, stars, double stars and cartesian
product of two paths.

Theorem 1.1 ([2]). Let G be simple graph with maximum degree A = A(G). Then

es(G) > max{f‘ 1,A(G)}

E(G)|+1
2
In this paper, we we determine the exact value of edge irregularity strength of we determine the
exact value of the edge irregularity strength of caterpillars, n-star graphs, (n, t)-kite graphs, cycle
chains and friendship graphs.

2. Main results

Let P, be a path on n vertices and let P, (k) be the graph which is obtained by attaching &
edges to each vertex of P,. Then P, (k) is a caterpillar graph. The vertex set V' (P, (k)) and edge
set £(P,(k)) of this caterpillar graph P, (k) are V (P, (k)) = {u;,u;; : 1 <i<n;1 < j <k}and
E(P,(k)) ={wuis1 : 1 <i<n—1}U{wu; 1 <i<n;1<j <k} respectively.

_ (k)

Theorem 2.1. Let P, (k) be the caterpillar graph. If n is even, then es(P,(k)) = =5

Proof. Let P, (k) be a caterpillar graph. According to Theorem 1.1[2] we have that es(P,(k)) <

(”(k; 1)} = ”(k; U To prove the equality, it suffices to prove the existence of an edge irregular
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(k—l—l)

labeling.
Let o1 V(P (k) — {1,2,. k+1 nk D1 be vertex labeling such that
(et1)i i=0 (mod 2);
V) 3o = ’
¢1(uz) { ’L(k-‘rl%—k‘-ﬁ-l’ 'L = 1 (mOd 2)

—k+t k+1) 1=0 (mod 2);
¢1(Uij):{ : 1 ( |

j+ =D+ 1)2(’““), i = (mod 2).

Since wy, (u;ui11) = (k+1)i+1and wy, (u;u;j) = k(i—1)+i+jforl <i<nand1l < j <k, the
weights of the edges under the labeling ¢, successively attain values 2,3, ..., n(k+1). We can see
that all vertex labels are at most (H ) and edge weights are distinct for all pairs of distinct edges.

Therefore the labeling ¢ is sultable edge irregular @ labeling. Hence es( P, (k)) = @ O

The gluing together of identical cycles appears in various guises in the literature. But the con-
struction of chains of cycles, with adjacent cycles sharing a single common vertex, is not prevalent.
For this reason, we require the following definition. The graph C? results from attaching two n-
cycles together at a single shared vertex. Continuing in this manner, we define C? by attaching a
third n-cycle to one of the n-cycles of C? in a similar uniform manner so that the cycle containing
two shared vertices consists of two identical §-paths. Recursively, the graph C}" consists of a chain
of m consecutive n-cycles. We refer to each of the graphs in this family as a cycle chain.

Theorem 2.2. Let C" be cycle chain. If n is even, then

es(C’,’?)z%—i—l

Proof. The vertices of C]" are identified as follows. First, the shared vertices of cycles C; and C; 1
are identified as ¢; for 1 < ¢ < m — 1. Also we identify a vertex of C; and (), to be ¢y and ¢,
respectively in such a way that we have 5 — 1 vertices in between ¢ and ¢; and ¢, 1 and ¢,, on
both sides . For 1 < i < m, the remaining vertices are identified as ¢; 1, ¢; 2, . . ., Cin1 if we move
clockwise from the vertex c; ; to the vertex ¢; and ¢;, ¢, ... ,c;%_l if we move anticlockwise
from the vertex c;_; to the vertex ¢;.

From Theorem 1.1 it follows that es(C)"*) > (%ﬂw = % + 1. For the converse, we define a
suitable edge irregular labeling ¢, : V(C)') — {1,2,..., %" 4 1} as follows:

¢2(ci):1+gi for 0<i<m
The remaining vertices of C" are labeled depending on whether 2 = 0 (mod 2) or

5 prm—
(mod 2).
Case L. If § = Omod(2), then for 1 < j < 5 — land 1 < i < m we define ¢, as,

N3
Il
—_

pa(ciy) =

n(i—1) 1)

GH1+ 20 =0 (mod 2)
J+ =5, j=1 (mod 2).
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and
n(i—1)
2

Since wg, (ciciy11) = 2 + ni, Wy, (cicyy 1) = 3+ nifor 0 < i < m —1and wg,(cijcij1) =
27 +2+n(i — 1), we,(c; ;¢ 541) =2 +3+n(i—1)for1 <i<mand1 < j <7 —1,s0the
edge weights are distinct for all pairs of distinct edges. Thus the vertex labeling ¢, is an %" + 1-
labeling.

Case2.If 7 =1 (mod 2), thenfor1 < j < § — 1land 1 < i < m we define ¢, as,

da(ci;) = j+1+

j+@,' 1 j=0 (mod?2),andi=1 (mod 2);
bo(cis) — j'—l-l—l-ﬁ, j‘El (mgd 2)andi =1 (mod 2);
j+1+55=, j#landi=0 (mod 2);
aGl) j=1landi=0 (mod 2).
and
( 2j+@, j=0 (mod2)andi=1 (mod 2);
j—l—@, j=1 (mod?2)andi=1 (mod 2);
Pa(ci ;) = j—i—l—i—@, j#1,7=1 (mod2)andi=0 (mod 2);
3—1—@, j=landi=0 (mod 2);
\ j—i—@, j=0 (mod2)andi=0 (mod 2).

Now for 0 < i < m — 1, we have wg, (ciciy1,1) = 3+ ni, wy,(cici1,) = 2+niifi =0 (mod 2)
and wg, (cicit1,1) = 1+ ni, we,(ciciyy,) =4 +mniifi =1 (mod 2). Also for 1 < i < m and
J # 1, we have wy, (¢; j¢iji1) = 25 + 2+ n(i — 1), wy, (¢} ;¢ 141) = 2j +3+n(i —1)ifi =1
(mod 2) and wg, (¢ jciji1) = 25 + 3 +n(i — 1), we, (¢ ;¢ j41) =2 +2+n(i —1)ifi =0
(mod 2). It is not difficult to see that all vertex labels are at most "3* + 1 and the weights of the

edges are pairwise distinct. Thus the vertex labeling ¢ is an “5* + 1-labeling. [

Truszczynski [4] defines a dragon as a graph obtained by joining a cycle graph C), to a path P,
of length ¢ with a bridge. Kim and park [19] call them (n, t)— kites. Next theorem gives the exact
value of the edge irregularity strength for (n, t)— kite.

Theorem 2.3. Let G = (n,t)— kite. Then

n—i—zf—i—lW
2

Proof. Let G = (n,t)— kite graph, the vertex set of G is

es(G) = |

{vill <i<n}uU{u|l <i<t}
and the edge set of G is

{vivi|l <1 <n—1}U{wuiq|l <i<t—1}U{v,v,uvr}
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By Theorem 1.1 it follows that es(G) = (%mw For the converse, we define a vertex (%t“w
-labeling ¢35 as follows:

Case 1. If n =2k and k = 0 (mod 2), then we define ¢3 : V(G) — {1,2,..., [+ ]} as

k—i+2 1<i<kandi=1 (mod 2);
p3(v;) =49 k—i+1, 1<i<kandi=0 (mod 2);
i—k, E+1<:<n.

[ k+H =1 (mod2);
¢3(Ui)—{k+%’+1, i=0 (mod 2)).

Since, wg, (V;ivit1) = 2(k—i)+2for1 < i <k, wy,(v;vis1) =2(i—k)+1fork+1<i<n
and wey, (w;u;+1) = n + i + 2, the weights of the edges under the labeling ¢3 successively attain
values 2,3,...,n + t + 1. We can see that all vertex labels are at most (%’5“-‘ and the edge
weights are distinct for all pairs of distinct edges. Therefore the labeling ¢35 is a suitable edge
irregular [2t+1]-labeling.

Case2.If n =2k and k =1 (mod 2), then we define ¢3 : V(G) — {1,2,..., [2t]} as

(k—i—1, 1<i<k-2;

1, i=k—1;

i—k+3, k<i<2k—3andi=1 (mod 2);
i—k+2 k<i<2k—3andi=0 (mod 2);
k41,  i=2k—22k—1;

k—1,  i=2k

¢3(U7;) =

\

[ k+HL =1 (mod 2);
¢3(Ui)—{k+%+17 i=0 (mod 2).

It is not difficult to see that all vertex labels are at most {%’5“} and the weights of the edges
are pairwise distinct. Thus the function ¢5 is the desired edge irregular {%t“w -labeling.
Case3.Ifn =2k + 1land k =0 (mod 2), then we define ¢3 : V(G) — {1,2,..., [2tE]} as

k—i+2, 1<i<kandi=1 (mod 2);
d3(v;) =49 k—i+1, 1<i<kandi=0 (mod 2);
i—k, k+1<i:<n.

[ kE+H2 i=1 (mod2);
¢3(Ui)_{k+%—{—1, i=0 (mod 2).

From discussion of Case I, it is clear that ¢3 is suitable (%t“w — labeling.
Case4.If n =2k and k =1 (mod 2), then we define ¢3 : V(G) — {1,2,..., [t ]} as

k—i—1 1<i<k-2
1, 1=k—1;
O3(v;)) =19 i—k+3, k<i<2k—4andi=1 (mod 2);
i—k+2 k<i<2k—4andi=0 (mod 2);
3k—i, 2k-3<i<n
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[ k+H2 =1 (mod2);
¢3<ui)—{k+%’+1’ i=0 (mod 2).

We can see that all vertex labels are at most (%mw and the edge weights are distinct for all

pairs of distinct edges. Therefore the labeling ¢5 is a suitable edge irregular ’—%t“-‘ -labeling.
Hence, es(G) = [“H . O

In [7] Seoud and El Sakhawi introduced the following operation of graphs. The symmetric
product G; & G, of two graphs GG and G, is the graph having vertex set V(G;) x V(G5) and
edge set {(u,v)(v,v' :uv’ € E(Gy) or wvv' € E(G5) butnot both}.

Theorem 2.4. Let G = P, & K, where P, is a path of order n and K is a null graph of order 2.

Then i — 3
es(G) = { n2 W

Proof. Let G = P, @ K} be symmetric product of P, and K3, the vertex set of G is V(G) =
{(zi,y;)|1 <i<mn,1<j<2}andthe edge set of G is E(G) = {(z4, y;)(Tit1,Y;)}
U{($i,y1)($i+1,y2)} U{($i,y2)($i+1,y1)} for 1 S 1 S n—1and1 S j S 2. So Pn D K; 18
a graph of order 2n and size 4n — 4. As A(P, & K}) = 4 then from Theorem 1.1 it follows that
es(G) > [#52].

For the converse, we define a suitable edge irregular labeling ¢, : V(G) — {1,2,..., [#52]} as
follows:

¢4($z’,y1) = 2i—1

[ 2i—2, i=0 (mod ?2);
Ga(Ti, 1) = { 2i+1, i=1 (mod 2).

Since, wg, (i, Y1) (Tig1, Y1) = 4, Wy, (T4, Y2) (i1, Y2) = 4+ 1, we, (24, Y1) (Tig1, y2) = 4i—1
ifi =1 (mod 2), wy, (x4, y1)(Tir1,y2) =4i+2ifi =0 (mod 2), we, (7, y2)(Tiy1,11) = 4i — 1
if i =0 (mod 2) and wy, (24, y2)(@it1,y1) = 46+ 2if i = 1 (mod 2), the weights of the edges

under the labeling ¢, successively attain values 3,4, ...,4n — 2. We can see that all vertex labels
are at most (‘“‘T’ﬂ and the edge weights are distinct for all pairs of distinct edges. Therefore the
labeling ¢, is a suitable edge irregular (@W -labeling. [

Let C%, denote the one-point union of ¢ cycles of length 4. So C is a graph of order 3¢ + 1 and
size 4t. As A(C}) = 2t then from Theorem 1.1 it follows that es(G) > [5]. Next theorem
gives the exact value of edge irregularity strength of C?

Theorem 2.5. Let C! be friendship graph, then
4t + 1

es(Cy) = | |=2t+1

87



Further results on edge irregularity strength of graphs | M. Imran, A. Aslam, S. Zafar and W. Nazeer

Proof. The vertices of C%, are identified as follows: the common vertex of each cycle is identified
as u. The remaining vertices of cycle C; are identified as ¢; 1, ¢; 2, ¢; 3 if we complete the cycle
moving clockwise from the vertex u to itself. Now, for 1 < ¢ < ¢ we construct the function
o5 V(Ch) — {1,2,...,2t + 1} as follows:

¢5(Ci,1) = 22—1

P5(ciz) = 1
P5(ciz) = 2i
One can see observe the labeling ¢5 is an edge irregular 2¢+-1-labeling, which implies the assertion.

]

Let T'(n, k) be a graph obtained by connecting a vertex v to the central vertices of n copies
of star on £ vertices. In particular, n copies of star on k + 1 vertices shares a common single
vertex v. We call T'(n, k) a n— star graph. The vertex set V' (T'(n, k)) and edge set E(T'(n, k)) are
V(T(n,k)) ={viU{w;: 1 <i<n}U{y;:1<i<nl1<j<k—1}and E((T(n,k)) =
{vu; : 1 <i <n}pU{uu; 1 <i<n;1l<j<k—1}respectively. So T'(n,k) is a graph
of order nk + 1 and size nk. As A(T'(n, k)) = max{n, k} then from Theorem 1.1 it follows that
es(T(n,k)) > [,

An exact value of the edge irregularity strength of n-star graph is given by the following theorem.

Theorem 2.6. Let G = T(n, k) be n— star graph, then es(G) = ["£H]

Proof. We define a suitable edge irregular labeling ¢ : V(T'(n,k)) — {1,2,..., [ ]} as
follows:

bo(v) = [nk;— 1w

The remaining vertices of 7'(n, k) are labeled depending on whether n = 0 (mod 2) orn = 1
(mod 2).
Case 1. If n = 0 (mod 2), then we define ¢ as,

i 1<i<?
A — ’. - - 2
Polus) {k<2;—”>+1, nci<n,
j—k+ik—2)+2, 1<i<2;
j—k+ D i=2+land1<j<
Po(tis) = T kn-2) nok—li=2+1landZ <j<n:
]+kT27 g <k—-Li=5+lands <j=mn
R i>1 4l

We can see that all vertex labels are at most [%-‘ = ”7"‘ + 1 and edge weights are distinct
for all pairs of distinct edges. Therefore the labeling ¢ is suitable edge irregular %’“ + 1 labeling.
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Hence es(T'(n, k)) =
Case2.1.Ifn=1 ( od 2) and n = k, then we define ¢ as,

i, 1<i<Hy

U;) = i T
¢6< z) { k(24 2n)+17 nT+1 <i<n.

j—k+ik—2)+2, 1<qi< 2,

¢6(uij):{ . (n+1)(n+2) 5n41 . n+1
]+ 2 — T 95 Z>T.

We can see that all vertex labels are at most ("’”W = ”"”“ and edge weights are distinct for all
pairs of distinct edges. Therefore the labeling ¢g is sultable edge irregular ”k“ labeling. Hence

( (n /{7)) _ nk+1
Case 22.If n = 1 (mod 2) and n > k, then we define ¢ as,

) 7
o) ={ tr] _ —pp, 25 s o
j—k+i(k—2)+2, 1§z’§%,
; (n—=1)(2k—1) nk+1 - n43 n+k
j _I_ - 9 1= =5 d] S 9 k9
Po(uiz) = j+ n+1+§(n—1) B ’[TLT—Ekﬂ? i — é ndj > ’[nTik}‘ .
=k ), >

We can see that the labeling ¢ is an edge irregular [t -labeling.
Case2.3. If n =1 (mod 2) and n < k, then we define ¢ as,

Po(ui) = { [mEH] — (n — i)k, 252 Z< i <n

J—k+i(k—2)+2, 1<i<zst
. (n=1)(2k—1) nk+1 - n+l . n+tk7.
Po(uij) = ]~+1L—j1+k(n 7 _Jrk( lt ?—éand]'< (iw
J+m— =all ?:nTHande’_%-‘;
k"‘[ —‘, Z>T.

We can see that all vertex labels are at most (”“W and edge weights are distinct for all pairs

of distinct edges. Therefore the labeling ¢4 is suitable edge irregular [%-‘ labeling. Hence

es(T(n, k)) = [252]. 0
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