

INDONESIAN JOURNAL OF COMBINATORICS

On the generating graph of a finite group

Haval M. Mohammed Salih^a

^aDepartment of Mathematics, Faculty of Science, Soran University, Kawa St. Soran, Iraq

haval.mohammed@soran.edu.iq

Abstract

In this paper, we study the generating graph for some finite groups which are semi-direct product $\mathbb{Z}_n \rtimes \mathbb{Z}_m$ (direct product $\mathbb{Z}_n \times \mathbb{Z}_m$) of cyclic groups \mathbb{Z}_n and \mathbb{Z}_m . We show that the generating graphs of them are regular (bi-regular, tri-regular) connected graph with diameter 2 and girth 3 if n and m are prime numbers. Several graph properties are obtained. Furthermore, the probability that 2-randomly elements that generate a finite group G is $P(G) = \frac{|\{(a,b)\in G\times G \mid G=\langle a,b\rangle\}|}{|G|^2}$. We find the general formula for P(G) of given groups. Our computations are done with the aid of GAP and the YAGs package.

Keywords: Semi-Direct Product Group, Generating Graph, Probability Mathematics Subject Classification : 20B40

1. Introduction

The concept of a generating graph of a finite group was first introduced in [5]. In this paper, they studiy a finite non abelian groups. This work considers the problems of a finite group G with 2-generators. First, what is the generating graph look like. Second, what is the probability that 2-randomly chosen elements will generate the whole group G. We show that there is a relationship between them. Here, we investigate these problems for some finite semi-direct product and direct product groups. Several examples for these groups are provided.

We will only consider the following finite groups:

- $G \cong \mathbb{Z}_n \rtimes \mathbb{Z}_m$ (the semi-direct product of \mathbb{Z}_n by \mathbb{Z}_m).
- $G \cong \mathbb{Z}_n \times \mathbb{Z}_m$ (the direct product of \mathbb{Z}_n by \mathbb{Z}_m).

Received: 09 February 2024, Revised 06 June 2024, Accepted: 30 June 2024.

• $G \cong \mathbb{Z}_n \times \mathbb{Z}_n$.

where $m, n \geq 2$.

Throughout this paper, we consider a finite simple un-directed graph Γ and G is a finite group. The eccentricity ecc(v) of a vertex v in a graph Γ is the greatest distance from v to any other vertex. The radius $rad(\Gamma)$ of Γ is the value of the smallest eccentricity. The diameter $diam(\Gamma)$ of Γ is the value of the greatest eccentricity. The center of Γ is the set of all vertices v such that $ecc(v) = rad(\Gamma)$. The girth of a graph, denoted by $g(\Gamma)$ is the length of the short cycle in the graph Γ . A graph Γ is said to be connected if there is a path between every pair of vertices. Two simple graphs Γ and Σ are isomorphic if exists a bijection $f: \Gamma \to \Sigma$ between vertices of the two graphs such that if ab is an edge in Γ then f(a)f(b) is an edge in Σ . The biregular graph and the triregular graph are defined as follows. Let a, b be positive integers, $1 \le a < b$. A graph Γ is said to be (a, b, c)-triregular if the degrees of its vertices assume exactly three different values: a, b and c. A planar graph is a graph that can be drawn on the plane in such a way that its edges intersect only at their endpoints. We will use Kuratowski's Theorem, which states that

Theorem 1.1. A graph is planar if and only if it does not contained a subdivision of the complete graph K_5 or of the complete bipartite graph $K_{3,3}$.

Clearly, the directed generating graph $\Gamma(G)$ is planar if and only if the undirected generating graph Γ is planar.

Lemma 1.1. In any given graph, the sum of degrees of all the vertices is twice the number of edges contained in it.

Theorem 1.2. A connected graph Γ is Eulerian if and only if the degree of each vertex of Γ is even.

Corollary 1.1. If Γ is a simple graph with $n \ge 3$ vertices, and if $deg(v) \ge \frac{n}{2}$ for each vertex v, then Γ is Hamiltonian.

Definition 1.1. Let H, N be subgroups of a group G. We say that G is semidirect product of N by H if H is normal in G, G = NH, and $N \cap H = \{e\}$.

Definition 1.2. Let H, N be groups. The cartesion product of H and $N, N \times H = \{(n, h) : n \in N \text{ and } h \in H\}$ is a group with respect to $(n_1, n_2)(h_1, h_2) = (n_1h_1, n_2h_2)$. This group is the direct product of groups N and H.

In [2], it was studied the generating graph $\Gamma(G)$ for non abelian simple groups. Here, we study the generating graph for some semi-direct product and direct product of groups. The aim of this paper is to determine these groups G with the property that $\Gamma(G)$ is connected. We will achieve that if G is isomorphic to one of the following: $\mathbb{Z}_p \times \mathbb{Z}_q, \mathbb{Z}_p \rtimes \mathbb{Z}_q \ \mathbb{Z}_p \times \mathbb{Z}_p$, where p, q are prime numbers. Furthermore, we find the general formula for the probability of each of them.

Definition 1.3. [5] Let G be a finite group. The generating graph $\Gamma(G)$ is a graph on the nonidentity elements of G so that two distinct vertices x, y are adjacent if they generate G, that is $G = \langle x, y \rangle$. Throughout this papar $V(\Gamma(G))$ and $E(\Gamma(G))$ denote the set of vertices and edges of the generating graph $\Gamma(G)$ respectively.

Definition 1.4. Let G be a finite group and let $\Gamma(G)$ be its generating graph. The probability that 2-randomly elements that generate G is $P(G) = \frac{|E(\Gamma(G))|}{|G|^2}$

Remark 1.1. If G is an abelian group and its probability denoted by $P_a(G)$, then $P(G) = P_a(G) = P_n(G)$. Otherwise, $P_a(G) = P_n(G)$ and $P(G) = P_a(G) + P_n(G)$, where $P_n(G)$ denoted the probability for non- abelian group.

Example 1.1. The generating graph of $D_6 := \mathbb{Z}_2 \rtimes \mathbb{Z}_3$ is

Figure 1. The generating graph of D_6

and the probability of G is $P_a(G) = \frac{1}{4} (P_n(G) = \frac{1}{4})$. So $P(G) = \frac{1}{2}$.

2. Main Results

Proposition 2.1. The generating graph $\Gamma(G)$ of $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$ has $\frac{(p^2-p)(p^2-1)}{2}$ edges.

Proof. For $a, b, c, d \in \mathbb{Z}_p$, $\langle (a, b), (c, d) \rangle$ generates $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$ if and only if there exist $r_1, r_2, r_3, r_4 \in \mathbb{Z}$ such that $r_1(a, b) + r_2(c, d) = (1, 0)$ and $r_3(a, b) + r_4(c, d) = (0, 1)$. It can be written in this form.

 $A\begin{pmatrix} r_1 & r_3 \\ r_2 & r_4 \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} r_1 & r_3 \\ r_2 & r_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

To solve this system, we need to take the inverse of A, which exists if and only if the column of A are independent. The first column (a, b) can be any thing except the zero vector. So, there are $p^2 - 1$ choice for (a, b). The next column must be chosen so that it is not a multiple of (a, b). Hence, given (a, b), there are $p^2 - p$ choices for the column (c, d). Thus the number of choices for the pair (a, b), (c, d) is $\frac{1}{2}(p^2 - p)(p^2 - 1)$. We divide by 2 because it is abelian. Hence, there are $\frac{1}{2}(p^2 - p)(p^2 - 1)$ ways to choose (a, b) and (c, d) such that $\langle (a, b), (c, d) \rangle$ generate $\mathbb{Z}_p \times \mathbb{Z}_p$ and we get the result.

Proposition 2.2. Let $\Gamma(G)$ be the generating graph of $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Then for any $v \in V(\Gamma(G)) \setminus \{0\}$, we have $deg(v) = p^2 - p$.

Proof. The proof similar as Proposition 2.1

Corollary 2.1. The probability of 2-randomly chosen elements generate $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$ is $\frac{1}{2}(1 - \frac{1}{p} - \frac{1}{p^2} + \frac{1}{p^3})$.

Proof. The proof follows from Proposition 2.1 and Definition 1.4.

Let n = pq where p, q are distinct odd prime numbers. Without loss of generality we may assume that p < q. It is well known that if $q \cong 1 \mod p$, then there are two groups of order n = pq up to isomorphism, one is cyclic and one is non-abelain. First, we consider the cyclic case.

Proposition 2.3. The generating graph $\Gamma(G)$ of $G \cong \mathbb{Z}_p \times \mathbb{Z}_q \equiv \mathbb{Z}_{pq}$ has $\frac{1}{2}(p^2q^2 - p^2 - q^2 - 3pq + 3p + 3q - 2)$ edges.

Proof. For $a, c \in \mathbb{Z}_p$ and $b, d \in \mathbb{Z}_q$, $\langle (a, b), (c, d) \rangle$ generates $G \cong \mathbb{Z}_p \times \mathbb{Z}_q$ if and only if there exist $r_1, r_2, r_3, r_4 \in \mathbb{Z}$ such that $r_1(a, b) + r_2(c, d) = (1, 0)$ and $r_3(a, b) + r_4(c, d) = (0, 1)$. It can be written in this form.

 $A\begin{pmatrix} r_1 & r_3 \\ r_2 & r_4 \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} r_1 & r_3 \\ r_2 & r_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

To solve this system, we need to take the inverse of A, which exists if and only the column of A are independent. The first coulmn (a, b) can be any thing except the zero. So, there are $(p-1)^2q$ choice for (a, b). The next column must be chosen so that it is not a multiple of (a, b). Hence, given (a, b), there are $(q-1)^2p$ choices for the column (c, d). Also, there are (pq-2)(pq-p-q+1) choices for (a, 0), (0, d). Thus the number of choices for the pair (a, b), (c, d) is $\frac{1}{2}((p-1)^2q + (q-1)^2p + (pq-2)(pq-p-q+1))$. We divide by 2 because it is abelian. Hence, there are $\frac{1}{2}((p-1)^2q + (q-1)^2p + (pq-2)(pq-p-q+1))$ ways to choose (a, b) and (c, d) such that $\langle (a, b), (c, d) \rangle$ generate $\mathbb{Z}_p \times \mathbb{Z}_q$ and we get the result.

Proposition 2.4. Let $G \cong \mathbb{Z}_{pq}$ and let $\Gamma(G)$ be its generating graph. Then for any $v \in V(\Gamma(G)) \setminus \{0\}$, we have $deg(v) = \begin{cases} n-p & \text{if } v \in \mathbb{Z}_p \\ n-q & \text{if } v \in \mathbb{Z}_q \\ n-2 & \text{otherwise} \end{cases}$

Proof. It is clear that $|V(\Gamma(G))| = n - 1$. We can partition $V(\Gamma(G))$ into three sets as follows: $A = \{a, ..., a^{p-1}\}, B = \{b, ..., b^{q-1}\}$ and $AB = \{ab, ..., a^{p-1}b^{q-1}\}$. Now we know that any element in A is adjacent with any element in B or in AB, because they generate G. However the pair of elements in A cannot generate G. So deg(v) = n - p. We can use the same arguments for elements of B. Finally, it is clear that any element in AB is adjacent with any element except zero and itself, they generate G and the result holds.

Corollary 2.2. The probability of 2-randomly chosen elements generate $G \cong \mathbb{Z}_{pq}$ is $\frac{1}{2}(1 - (\frac{1}{p^2} + \frac{1}{q^2}) + \frac{1}{pq}(\frac{3}{p} + \frac{3}{q} - \frac{2}{pq})).$

Proof. The proof follows from Proposition 2.3 and Definition 1.4.

Here, we consider a non-abelian group G of order pq. That is, $xy \neq yx$ for some $x, y \in G$. In our situation, $G = \langle x, y \rangle = \langle y, x \rangle$.

Proposition 2.5. Let $\Gamma(G)$ be the generating graph of $G \cong \mathbb{Z}_p \rtimes \mathbb{Z}_q$. Then for any $v \in V(\Gamma(G)) \setminus \{0\}$, we have $deg(v) = \begin{cases} n-q & \text{if } v \in \mathbb{Z}_q \\ n-p & \text{otherwise} \end{cases}$

Proof. It is clear that $|V(\Gamma(G))| = n - 1$. We can partition $V(\Gamma(G))$ into two sets as follows: $B = \{b, ..., b^{q-1}\}$ and $AB = \{ab, ..., a^{p-1}b^{q-1}, a, a^2\}$. Now if we take any element in B and any elements in AB, they generate G. However the pair of elements in B cannot generate G. So deg(v) = n - q. Similarly, deg(v) = n - p for $v \in AB$. This completes the proof. \Box

Proposition 2.6. The generating graph $\Gamma(G)$ of $G \cong \mathbb{Z}_p \rtimes \mathbb{Z}_q$ has $\frac{1}{2}(p^2q^2 - p^2q - q^2 + q)$ edges.

Proof. By Proposition 2.5, we have deg(v) = n - q for $v \in \mathbb{Z}_q$ and there are q - 1 vertices of this degree. Also, we have deg(v) = n - p for $v \in \mathbb{Z}_p$ and there are n - q vertices of degree n - p. The rest follows from Lemma 1.1.

The following result can be seen as the answer for the open question which exists in [4]. So the probability that two elements randomly chosen from $(\mathbb{Z}_p \rtimes \mathbb{Z}_q)$ generate it, is $(1 - \frac{1}{n^2})(1 - \frac{1}{q})$.

Corollary 2.3. The right probability of 2-randomly chosen elements generate $G \cong \mathbb{Z}_p \rtimes \mathbb{Z}_q$ is $\frac{1}{2}((1-\frac{1}{p^2})(1-\frac{1}{q})).$

Proof. The proof follows from Proposition 2.6 and Definition 1.4.

The following result shows that non-isomorphic groups have the same generating graph.

Proposition 2.7. The generating graphs of $G \cong \mathbb{Z}_2 \times \mathbb{Z}_q$ and $H \cong \mathbb{Z}_2 \rtimes \mathbb{Z}_q$ are isomorphic.

Proof. Let $G = \langle a, b | a^2 = 1 = b^q$, $ab = ba \rangle$ and $H = \langle x, y | x^2 = 1 = y^q$, $xyx = y^{-1} \rangle$. Define $f: G \setminus \{1\} \to H \setminus \{1\}$ by f(a) = x and f(b) = y. It is clear that f is bijective and f preserves adjacency of vertices. Therefore, the generating graphs of $G \cong \mathbb{Z}_2 \times \mathbb{Z}_q$ and $H \cong \mathbb{Z}_2 \rtimes \mathbb{Z}_q$ are isomorphic.

In general, the generating graphs of $G \cong \mathbb{Z}_p \times \mathbb{Z}_q$ and $H \cong \mathbb{Z}_p \rtimes \mathbb{Z}_q$ are not isomorphic if p and q are distinct odd prime numbers. For instance $\Gamma(\mathbb{Z}_7 \times \mathbb{Z}_3) \ncong \Gamma(\mathbb{Z}_7 \rtimes \mathbb{Z}_3)$, because they have different number of edges.

Example 2.1. Let $G = D_{2p} \cong \mathbb{Z}_2 \rtimes \mathbb{Z}_p$. By Proposition 3.1, the generating graph is connected graph with p(p-1) edges and its right probability $P_r(G) = \frac{3(p-1)}{8p} = P_l(G)$. Thus $P(G) = \frac{3(p-1)}{4p}$.

Example 2.2. Let $G = \mathbb{Z}_{2^m}$. There are 2^{m-1} vertices of degree $2^m - 2$. Also there are $2^{m-1} - 1$ vertices of degree 2^{m-1} . The generating graph is bi-regular connected graph with $3(2^{m-2})(2^{m-1} - 1)$ edges and its probability $P(G) = \frac{3(2^{m-1}-1)}{2^{m+1}}$.

3. Some Properties of $\Gamma(G)$

In this section, we study some basic properties of $\Gamma(G)$, such as connectivity, radius, diameter and planarity.

Proposition 3.1. The generating graph $\Gamma(G)$ of $G \cong \mathbb{Z}_p \rtimes \mathbb{Z}_q$ is bi-regular connected with diameter and radius two. It has girth 3.

Proof. The bi-regularity follows from Proposition 2.5. Let $u, v \in \Gamma(G)$. If $u, v \in \mathbb{Z}_q$, then there exists $z \in \Gamma(G) \setminus \mathbb{Z}_q$ such that $G = \langle u, z \rangle$ and $G = \langle v, z \rangle$. So there exists a path between of them. If $u \in \mathbb{Z}_q$ and v is not, then u is adjacent to v. We are done. If u and v are adjacent and they are not in \mathbb{Z}_q . Then there is x in \mathbb{Z}_q which is adjacent to u and v. Hence there is a path from u and v. For any $u \in \Gamma(G)$. Then ecc(v) = 2 by previous arguments. So rad(G) = diam(G) = 2. Finally, take $a^k b^l$ and $a^m b^n$ which are adjacent where $1 \le k, m \le p - 1$ and $1 \le l, n \le q - 1$. These two vertices are adjacent with b^d for some d, where $1 \le d \le q - 1$. It gives K_3 in $\Gamma(G)$. So it has girth 3. This completes the proof.

Proposition 3.2. The generating graph $\Gamma(G)$ of $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$ is a regular connected with diameter and radius 2. It has girth 3.

Proof. The regularity follows from Proposition 2.2 and the rest is similar as Proposition 3.1.

Proposition 3.3. The generating graph $\Gamma(G)$ of $G \cong \mathbb{Z}_p \times \mathbb{Z}_q$ is tri-regular connected with diameter 2 and radius 1. It has girth 3.

Proof. The proof is similar to Proposition 3.1.

Proposition 3.4. If p, q are odd prime numbers and $G = \mathbb{Z}_p \rtimes \mathbb{Z}_q$, then the generating graph $\Gamma(G)$ is Eulerian.

Proof. The proof follows from Proposition 2.5 and Theorem 1.2.

Proposition 3.5. If $G = \mathbb{Z}_p \rtimes \mathbb{Z}_q, \mathbb{Z}_p \times \mathbb{Z}_q, \mathbb{Z}_p \times \mathbb{Z}_p$, then the generating graph $\Gamma(G)$ is Hamiltonian.

Proof. The proof follows from Propositions 2.5, 2.4, 2.2 and Theorem 1.2.

Proposition 3.6. If p, q are odd distinct prime numbers and $G = \mathbb{Z}_p \rtimes \mathbb{Z}_q$, then the generating graph $\Gamma(G)$ is not planar.

Proof. Since q and p are odd prime numbers then all pq - q vertices of degree pq - p are adjacent together which contains a subgraph K_5 . So by Theorem 1.1, the generating graph $\Gamma(G)$ is not planar.

Proposition 3.7. If p, q are odd distinct prime numbers and $G = \mathbb{Z}_p \times \mathbb{Z}_q$, then the generating graph $\Gamma(G)$ is not planar.

Proof. Since q and p are odd prime numbers then all pq - p - q + 1 vertices of degree pq - 2 are adjacent together which contains a subgraph K_5 . So by Theorem 1.1, the generating graph $\Gamma(G)$ is not planar.

Proposition 3.8. If $p \ge 5$ and $G = D_{2p}$, then the generating graph $\Gamma(G)$ is not planar.

Proof. Since $q \ge 5$, then all 2p - q vertices of degree 2p - 2 are adjacent together which contains a subgraph K_5 . So by Theorem 1.1, the generating graph $\Gamma(G)$ is not planar.

We end up this work with the following remark.

Remark 3.1. In general, if n and m are not both odd prime numbers, then $\Gamma(G)$ is not a connected graph. It can be seen in Figure 2.

Figure 2. The generating graph of $\mathbb{Z}_4 \times \mathbb{Z}_2$

References

- [1] E. Bertram, M. Herzog, and A. Mann, On a graph related to conjugacy classes of groups, *Bulletin of the London Mathematical Society*, **22** (6) (1990), 569–575.
- [2] T. Breuer, R. Guralnick, and W. Kantor, Probabilistic generation of finite simple groups, II *Journal of Algebra*, **320** (2) (2008), 443–494.
- [3] A. Erfanian and B. Tolue, Conjugate graphs of finite groups, *Discrete Mathematics, Algorithms and Applications*, **4**, (2) (2012), 1250035.
- [4] B. Esther, Probability of generating a dicyclic group using two elements *Pi Mu Epsilon Journal* 14 (3) (2015), 165–168.
- [5] M. W. Liebeck and A. Shalev, Simple groups, probabilistic methods, and a conjecture of Kantor and Lubotzky, J. Algebra 184 (1996), 31–57.
- [6] K. L. Patti, The probability of randomly generating a finite group *Pi Mu Epsilon Journal* 11 (6) (2002), 313–316.
- [7] H. Tong-Viet, Finite groups whose prime graphs are regular. *Journal of Algebra* **397** (2014), 18–31.
- [8] R. J. Wilson, Introduction to graph theory, *Pearson Education India* (1979).