

Locating Chromatic Number for Corona Operation of Path P_n and Cycle C_m , (m = 3, 4)

Nur Hamzah^a, Asmiati^a, Wahyu Dwi Amansyah^a

^aDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, Indonesia

asmiati.1976@fmipa.unila.ac.id

Abstract

The locating chromatic number of a graph (lcn) is one of the topics in graph theory that is still interesting to research until now because there is no general theorem for determining the *lcn* of any graph. The corona operation of P_n and C_m , denoted by $P_n \odot C_m$ is defined as the graph obtained by taking one copy of P_n and $|V(P_n)|$ copies of C_m and then joining all the vertices of the k^{th} -copy of C_m with the k^{th} -vertex of P_n . In this paper, we discuss the *lcn* for the corona operation of path and cycle. The *lcn* of $P_n \odot C_3$ is 5 for $3 \le n < 6$ and 6 for $n \ge 7$. Moreover, $P_n \odot C_4$ is 5 for $3 \le n < 6$ and 6 for $n \ge 6$.

Keywords: locating chromatic number, corona operation, path, cycle Mathematics Subject Classification : 05C12; 05C15.

1. Introduction

Chartand, et al.[13] in 2002 introduced the *lcn* by combining concept of coloring vertices and partition dimension of a graph. Let Z be a connected graph with U(Z) is a set of vertices and W(Z) is a set of edges. A q-coloring vertices of Z is a function $h: U(Z) \rightarrow \{1, 2, ..., q\}$ where $h(u) \neq h(v)$ for any two adjacent vertices u and v in Z. Let H_i be a set of vertices that are given a color i, hereinafter referred to as a color class, then partition $\prod = \{H_1, H_2, H_3, ..., H_q\}$ is a set of color classes from U(Z). The color code for the vertex $v \in U(Z)$ denoted by $h_{\Pi}(v)$ are q-tuples $(d(v, H_1), d(v, H_2), d(v, H_3), ..., d(v, H_q)$ with $d(v, H_i) = \min\{d(v, x) | x \in H_i\}$

Received: 03 April 2024, Revised: 16 December 2024, Accepted: 30 December 2024.

for $1 \le i \le q$ where d(v, x) is the minimum distance from vertex v to vertex x. If each vertices in Z has a different color code, then h is called a q-locating coloring (q-lc) of Z, denoted by $\chi(Z)$. While the minimum number of q colors used in coloring of Z is called the locating chromatic number (lcn) of Z, which is denoted by $\chi_L(Z)$.

The following theorem from chartrand [13] will be used to determine the *lcn* for corona operation of path and cycle.

Theorem 1.1. The lcn of a cycle graph $C_n (n \ge 3)$ is 3 for odd n and 4 for even n.

Chartrand, et al.[13] determined the *lcn* of some simple graphs, namely: complete graphs, cycles, paths, and caterpillars. Next, Chartrand et al.[14] obtained that there are trees T_n , $n \ge 5$ with *lcn* 1 varying *n*, except n - 1. In 2011, Asmiati et al.[1] studied the *lcn* for amalgamation of stars, other research results for several graph classes can be seen at [3], [4], [5], and [18]. Asmiati and Baskoro [2] characterized graphs having cycles with *lcn* 3. Then, Baskoro and Asmiati [11] in 2013 obtained the characterization of all tree with *lcn* 3.

Determining *lcn* of graph operations has been carried out. Asmiati et al.[6] determined *lcn* of barbell graphs contain Petersen graphs dan complete graphs. Next, Asmiati et al.[7] for *lcn* of subdivision of barbell graphs containing generalized Petersen graphs. Asmiati et al. [8] in 2021 succeeded the *lcn* of the path shadow graphs and its barbell, whereas Sudarsana et al.[20] for m-shadow of connected graphs. Recently, Asmiati et al.[10] investigated *lcn* for upper bounds for shadow cycle graphs. Asmiati et al. [9] determined the *lcn* for certain operation of origami graphs, whereas Behtoei and Omoomi[12] for cartesian product of graphs. Furuya and Matsumoto[16] obtained *lcn* of upper bound for trees, Ghanem et al.[17] for power of cycles and paths, Syofyan et al.[21] for homogeneous lobsters, and Welyyanti et al.[19] discussed the *lcn* of graphs contain dominant vertices.

The corona operation of P_n and C_m , denoted by $(P_n \odot C_m)$ is defined as the graph obtained by taking one copy of P_n and $|V(P_n)|$ copies of C_m and then joining all the vertices of the k^{th} -copy of C_m with the k^{th} -vertex of P_n [15]. We obtained $V(P_n \odot C_m) = \{v_k; k \in [1, n]\} \cup \{u_k^l; k \in [1, n], l \in [1, m]\}$ and $E(P_n \odot C_m) = \{v_k v_{k+1}; k \in [1, n-1]\} \cup \{u_k^l u_k^{l+1}; k \in [1, n], l \in [1, m-1]\} \cup \{u_k^l u_k^l; k \in [1, n], l \in [1, m]\}$.

In this paper, we discuss the *lcn* for the corona operation of path and cycle $(P_n \odot C_m)$, where $n \ge 3$ and m = 3, 4.

2. Main Results

Theorem 2.1. *lcn for corona graph* $P_n \odot C_3$ *is* 5 *for* $3 \le n < 7$ *and* 6 *for* $n \ge 7$ *.*

PROOF.

Case 1. $(3 \le n < 7)$ First, we determine the lower bound of the *lcn* of $P_n \odot C_3$. Since $P_n \odot C_3$ contains odd cycle graphs, based on Theorem 1.1, we have $\chi_L(P_n \odot C_3) \ge 3$. Suppose that h is a 3-*lc* (locating coloring) of $P_n \odot C_3$. It is clearly that there are two vertices with the same color, namely $h(u_k^a) = h(u_k^b)$ where $a \ne b$, so they have the same color code, a contradiction with the condition of *lcn*. Therefore, $\chi_L(P_n \odot C_3) \ge 4$. Suppose h is a 4-*lc* of $P_n \odot C_3$. Observe that $d(u_k^1, v) = d(u_k^3, v)$ where $v \notin \{u_k^1, u_k^3\}$ such that $\{h(u_k^a)\} = \{1, 2, 3, 4\} \setminus h(v_k)$. As a result,

there are $h(u_a^m) = h(u_b^n)$ with $a \neq b$, $m \neq n$ and $h_{\Pi}(u_a^m) = h_{\Pi}(u_b^n)$, a contradiction with the condition of *lcn*. So, $\chi_L(P_n \odot C_3) \geq 5$.

Next, to determine the upper bound of the *lcn* of $P_n \odot C_3$ for $3 \le n < 7$. Let *h* be 5coloring in $P_3 \odot C_3$ as follows: $H_1 = \{u_1^1, u_3^1\}$, $H_2 = \{u_1^2, u_2^1, u_3^2\}$, $H_3 = \{u_1^3, u_2^2\}$, $H_4 = \{u_2^3, v_1, v_3\}$, $H_5 = \{u_3^3, v_2\}$. Then we have the following color code: $h_{\Pi}(u_1^1) = \{0, 1, 1, 1, 2\}$; $h_{\Pi}(u_1^2) = \{1, 0, 1, 1, 2\}$; $h_{\Pi}(u_1^3) = \{1, 1, 0, 1, 2\}$; $h_{\Pi}(u_2^1) = \{3, 0, 1, 1, 1\}$; $h_{\Pi}(u_2^2) = \{3, 1, 0, 1, 1\}$; $h_{\Pi}(u_2^3) = \{3, 1, 1, 0, 1\}$; $h_{\Pi}(u_3^1) = \{0, 1, 3, 1, 1\}$; $h_{\Pi}(u_3^2) = \{1, 0, 3, 1, 1\}$; $h_{\Pi}(u_3^3) = \{1, 1, 3, 1, 0\}$; $h_{\Pi}(v_1) = \{1, 1, 1, 0, 1\}$; $h_{\Pi}(v_2) = \{2, 1, 1, 1, 0\}$; $h_{\Pi}(v_3) = \{1, 1, 2, 0, 1\}$. Since all vertices in $P_3 \odot C_3$ have distinct color codes, then *h* is a 5-*lc*. So, $\chi_L(P_3 \odot C_3) \le 5$. Therefore, we have $\chi_L(P_3 \odot C_3) = 5$.

Let h be 5-coloring in $P_4 \odot C_3$ as follows: $H_1 = \{u_1^1, u_3^1, u_4^1\}, H_2 = \{u_1^2, u_2^1, u_3^2\}, H_3 = \{u_1^3, u_2^2, u_4^2\}, H_4 = \{u_2^3, u_4^3, v_1, v_3\}, H_5 = \{u_3^3, v_2, v_4\}.$ The color codes of vertices are: $h_{\Pi}(u_1^1) = \{0, 1, 1, 1, 2\}; h_{\Pi}(u_1^2) = \{1, 0, 1, 1, 2\}; h_{\Pi}(u_1^3) = \{1, 1, 0, 1, 2\}; h_{\Pi}(u_2^1) = \{3, 0, 1, 1\}; h_{\Pi}(u_2^2) = \{3, 1, 0, 1, 1\}; h_{\Pi}(u_2^3) = \{3, 1, 1, 0, 1\}; h_{\Pi}(u_3^1) = \{0, 1, 3, 1, 1\}; h_{\Pi}(u_3^2) = \{1, 0, 3, 1, 1\}; h_{\Pi}(u_3^3) = \{1, 1, 3, 1, 0\}; h_{\Pi}(u_4^1) = \{0, 3, 1, 1, 1\}; h_{\Pi}(u_4^2) = \{1, 3, 0, 1, 1\}; h_{\Pi}(u_4^3) = \{1, 2, 1, 1, 0\}; h_{\Pi}(v_1) = \{1, 1, 1, 0, 1\}; h_{\Pi}(v_2) = \{2, 1, 1, 1, 0\}; h_{\Pi}(v_3) = \{1, 1, 2, 0, 1\}; h_{\Pi}(v_4) = \{1, 2, 1, 1, 0\}.$ Since all vertices in $P_4 \odot C_3$ have distinct color codes, then h is a 5-lc. We have, $\chi_L(P_4 \odot C_3) \leq 5$.

Let h be 5-coloring in $P_5 \odot C_3$ as follows: $H_1 = \{u_1^1, u_3^1, u_4^1, v_5\}, H_2 = \{u_1^2, u_2^1, u_3^2, u_5^1\}, H_3 = \{u_1^3, u_2^2, u_4^2, u_5^2\}, H_4 = \{u_2^3, u_4^3, v_1, v_3\}, H_5 = \{u_3^3, u_5^3, v_2, v_4\},$. Then,the color codes of vertices are: $h_{\Pi}(u_1^1) = \{0, 1, 1, 1, 2\}; h_{\Pi}(u_1^2) = \{1, 0, 1, 1, 2\}; h_{\Pi}(u_1^3) = \{1, 1, 0, 1, 2\}; h_{\Pi}(u_2^1) = \{3, 0, 1, 1, 1\}; h_{\Pi}(u_2^2) = \{3, 1, 0, 1, 1\}; h_{\Pi}(u_3^3) = \{3, 1, 1, 0, 1\}; h_{\Pi}(u_3^1) = \{0, 1, 3, 1, 1\}; h_{\Pi}(u_3^2) = \{1, 0, 3, 1, 1\}; h_{\Pi}(u_3^3) = \{1, 1, 3, 1, 0\}; h_{\Pi}(u_4^1) = \{0, 3, 1, 1, 1\}; h_{\Pi}(u_4^2) = \{1, 3, 0, 1, 1\}; h_{\Pi}(u_4^3) = \{1, 1, 1, 0, 1\}; h_{\Pi}(u_5^1) = \{1, 0, 1, 3, 1\}; h_{\Pi}(u_5^2) = \{1, 1, 0, 3, 1\}; h_{\Pi}(u_5^3) = \{1, 1, 1, 3, 0\}; h_{\Pi}(v_1) = \{1, 1, 1, 0, 1\}; h_{\Pi}(v_2) = \{2, 1, 1, 1, 0\}; h_{\Pi}(v_3) = \{1, 1, 2, 0, 1\}; h_{\Pi}(v_4) = \{1, 2, 1, 1, 0\}; h_{\Pi}(v_5) = \{0, 1, 1, 2, 1\}.$ Since all vertices in $P_5 \odot C_3$ have distinct color codes. Then, h is a 5-lc. Therefore, $\chi_L(P_5 \odot C_3) \leq 5$. So, $\chi_L(P_5 \odot C_3) = 5$.

Let h be 5-coloring in $P_6 \odot C_3$ as follows: $H_1 = \{u_1^1, u_3^1, u_4^1, u_6^1, v_5\}, H_2 = \{u_1^2, u_2^1, u_3^2, u_5^1, u_6^2\}, H_3 = \{u_1^3, u_2^2, u_4^2, u_5^2, u_6^3\}, H_4 = \{u_2^3, u_4^3, v_1, v_3, v_6\}, H_5 = \{u_3^3, u_3^5, v_2, v_4\}.$ Then the color codes of vertices are: $h_{\Pi}(u_1^1) = \{0, 1, 1, 1, 2\}; h_{\Pi}(u_1^2) = \{1, 0, 1, 1, 2\}; h_{\Pi}(u_1^3) = \{1, 1, 0, 1, 2\}; h_{\Pi}(u_2^1) = \{3, 0, 1, 1, 1\}; h_{\Pi}(u_2^2) = \{3, 1, 0, 1, 1\}; h_{\Pi}(u_2^3) = \{3, 1, 1, 0, 1\}; h_{\Pi}(u_3^1) = \{0, 1, 3, 1, 1\}; h_{\Pi}(u_3^2) = \{1, 0, 3, 1, 1\}; h_{\Pi}(u_3^3) = \{1, 1, 3, 1, 0\}; h_{\Pi}(u_4^1) = \{0, 3, 1, 1, 1\}; h_{\Pi}(u_4^2) = \{1, 3, 0, 1, 1\}; h_{\Pi}(u_3^1) = \{1, 0, 1, 3, 1\}; h_{\Pi}(u_6^1) = \{1, 1, 1, 3\}; h_{\Pi}(u_6^2) = \{1, 0, 1, 1, 3\}; h_{\Pi}(u_6^3) = \{1, 1, 0, 1, 3\}; h_{\Pi}(v_1) = \{1, 1, 1, 0, 1\}; h_{\Pi}(v_2) = \{2, 1, 1, 1, 0\}; h_{\Pi}(v_3) = \{1, 1, 2, 0, 1\}; h_{\Pi}(v_4) = \{1, 2, 1, 1, 0\}; h_{\Pi}(v_5) = \{0, 1, 1, 2, 1\}; h_{\Pi}(v_6) = \{1, 1, 1, 0, 2\}.$ Since all vertices in $P_6 \odot C_3$ have distinct color codes, then h is a 5-lc. Therefore, we have $\chi_L(P_6 \odot C_3) \leq 5$.

Case 2. $(n \ge 7)$.

First, we determine the lower bound of lcn of $P_n \odot C_3$ for $n \ge 7$. Suppose h is a 5-lc of $P_n \odot C_3$ for $n \ge 7$. Then, there are $h(u_a^m) = h(u_b^n)$ with $a \ne b$, $m \ne n$ and $h_{\Pi}(u_a^m) = h_{\Pi}(u_b^n)$, contradiction with the condition of *lcn*. So, we have $\chi_L(P_n \odot C_4) \ge 6$ for $n \ge 7$.

Let *h* be a 6-coloring in $P_n \odot C_3$ for $n \ge 7$ as follows:

$$h(u_k^l) = \begin{cases} 1, & \text{for } k = 1, 2, \dots, n \text{ and } l = 1. \\ 2, & \text{for } k = 1, 2, \dots, n \text{ and } l = 2. \\ 3, & \text{for } k = 1, 2, \dots, n-1 \text{ and } l = 3. \\ 6, & \text{for } k = n \text{ and } l = 3. \end{cases}$$
$$h(v_k) = \begin{cases} 4, & \text{for odd } k. \\ 5, & \text{for even } k. \end{cases}$$

Then the color code of vertices are:

$$h_{\Pi}(v_k) = \begin{cases} 0 &, 1^{st} \text{ tuple; } k = 1, 2, \dots, n \text{ and } l = 1; \\, 2^{nd} \text{ tuple; } k = 1, 2, \dots, n \text{ and } l = 2; \\, 3^{rd} \text{ tuple; } k = 1, 2, \dots, n - 1 \text{ and } l = 3; \\, 6^{th} \text{ tuple; } k = n \text{ and } l = 3. \end{cases}$$

$$h_{\Pi}(u_k^l) = \begin{cases} 0 &, 1^{st} \text{ tuple; } k = 1, 2, \dots, n \text{ and } l = 2, 3; \\, 2^{nd} \text{ tuple; } k = 1, 2, \dots, n \text{ and } l = 1, 3; \\, 3^{rd} \text{ tuple; } k = 1, 2, \dots, n \text{ and } l = 1, 2; \\, 4^{th} \text{ tuple; odd } k \text{ and } l = 1, 2, 3; \\, 5^{th} \text{ tuple; odd } k \text{ and } l = 1, 2, 3; \\, 6^{th} \text{ tuple; even } k \text{ and } l = 1, 2, 3; \\, 6^{th} \text{ tuple; even } k \text{ and } l = 1, 2, 3; \\, 6^{th} \text{ tuple; odd } k \text{ and } l = 1, 2, 3; \\, 6^{th} \text{ tuple; odd } k \text{ and } l = 1, 2, 3; \\, 6^{th} \text{ tuple; odd } k \text{ and } l = 1, 2, 3; \\, 6^{th} \text{ tuple; even } k; \\, 5^{th} \text{ tuple; odd } k; \\, 5^{th} \text{ tuple; odd } k; \\, 5^{th} \text{ tuple; odd } k; \\, 1 &, 1^{st} \text{ tuple; odd } k; \\, 5^{th} \text{ tuple; odd } k; \\, 1 &, 1^{st} \text{ tuple; odd } k; \\, 2^{nd} \text{ tuple; } k = 1, 2, \dots, n; \\, 3^{rd} \text{ tuple; } k = 1, 2, \dots, n; \\, 4^{th} \text{ tuple; even } k; \\, 5^{th} \text{ tuple; even } k; \\, 5^{th} \text{ tuple; odd } k. \\(n - k) + 1 &, 6^{th} \text{ tuple; } 1 \leq k \leq n. \end{cases}$$

Thus, since all vertices in $P_n \odot C_3$ have distinct color codes, then h is a 6-*lc*. Therefore, $\chi_L(P_n \odot C_3) = 6$ for $n \ge 7$.

Theorem 2.2. *lcn of corona graph* $P_n \odot C_4$ *is* 5 *for* $3 \le n < 6$ *, and* 6 *for* $n \ge 6$ *.*

PROOF.

Figure 1. A minimum lc of $P_7 \odot C_3$

Case 1. $(3 \le n < 6)$ First, we determine the lower bound of the *lcn* of $P_n \odot C_4$. Since $P_n \odot C_4$ contains cycle graphs, based on Theorem 1.1 we have $\chi_L(P_n \odot C_4) \ge 4$. For a contradiction, assume there exists a 4-lc on $P_n \odot C_4$. It is clearly that there are two vertices with the same color, namely $h(u_k^a) = h(u_k^b)$ where $a \ne b$, so they have the same color code, a contradiction. Therefore, $\chi_L(P_n \odot C_3) \ge 5$.

Next, to determine the upper bound of the locating chromatic of $P_n \odot C_4$ for $3 \le n < 5$. Let h be 5-coloring in $P_3 \odot C_4$ as follows: $H_1 = \{u_1^1, u_2^1, u_3^3\}$, $H_2 = \{u_1^2, u_2^2, u_3^1\}$, $H_3 = \{u_1^3, u_2^4, v_3\}$, $H_4 = \{u_1^4, u_3^2, v_2\}$, $H_5 = \{u_2^3, u_3^4, v_1\}$. Then,The color codes of vertices are: $h_{\Pi}(u_1^1) = \{0, 1, 2, 1, 1\}$; $h_{\Pi}(u_1^2) = \{1, 0, 1, 2, 1\}$; $h_{\Pi}(u_1^2) = \{2, 1, 0, 1, 1\}$; $h_{\Pi}(u_1^4) = \{1, 2, 1, 0, 1\}$; $h_{\Pi}(u_2^1) = \{0, 1, 1, 1, 2\}$; $h_{\Pi}(u_2^2) = \{1, 0, 2, 1, 1\}$; $h_{\Pi}(u_3^2) = \{2, 1, 1, 1, 0\}$; $h_{\Pi}(u_2^4) = \{1, 2, 0, 1, 1\}$; $h_{\Pi}(u_3^1) = \{2, 0, 1, 1, 1\}$; $h_{\Pi}(u_3^2) = \{1, 1, 1, 0, 2\}$; $h_{\Pi}(u_3^3) = \{0, 2, 1, 1, 1\}$; $h_{\Pi}(u_3^4) = \{1, 1, 1, 2, 0\}$; $h_{\Pi}(v_1) = \{1, 1, 1, 1, 0\}$; $h_{\Pi}(v_2) = \{1, 1, 1, 0, 1\}$; $h_{\Pi}(v_3) = \{1, 1, 0, 1, 1\}$. Thus, since all vertices in $P_3 \odot C_4$ have distinct color code, then h is a 5-lc. So, $\chi_L(P_3 \odot C_4) \le 5$.

Let h be a 5-coloring in $P_4 \odot C_4$ as follows: $H_1 = \{u_1^1, u_2^1, u_3^3\}, H_2 = \{u_1^2, u_2^2, u_3^1\}, H_3 = \{u_1^3, u_2^4, v_3\}, H_4 = \{u_1^4, u_3^2, v_2\}, H_5 = \{u_2^3, u_3^4, v_1\}.$ Then, The color codes of vertices are: $h_{\Pi}(u_1^1) = \{0, 1, 2, 1, 1\}; h_{\Pi}(u_1^2) = \{1, 0, 1, 2, 1\}; h_{\Pi}(u_1^3) = \{2, 1, 0, 1, 1\}; h_{\Pi}(u_1^4) = \{1, 2, 1, 0, 1\}; h_{\Pi}(u_2^1) = \{0, 1, 1, 1, 2\}; h_{\Pi}(u_2^2) = \{1, 0, 2, 1, 1\}; h_{\Pi}(u_2^3) = \{2, 1, 1, 1, 0\}; h_{\Pi}(u_2^4) = \{1, 2, 0, 1, 1\}; h_{\Pi}(u_3^1) = \{2, 0, 1, 1, 1\}; h_{\Pi}(u_3^2) = \{1, 1, 1, 0, 2\}; h_{\Pi}(u_3^3) = \{0, 2, 1, 1, 1\}; h_{\Pi}(u_4^4) = \{1, 1, 2, 0\}; h_{\Pi}(u_4^1) = \{0, 1, 1, 2, 1\}; h_{\Pi}(u_2^2) = \{1, 1, 0, 1, 2\}; h_{\Pi}(u_3^3) = \{2, 1, 1, 0, 1\}; h_{\Pi}(u_4^4) = \{1, 1, 2, 1, 0\}; h_{\Pi}(v_1) = \{1, 1, 1, 1, 0\}; h_{\Pi}(v_2) = \{1, 1, 1, 0, 1\}; h_{\Pi}(v_3) = \{1, 1, 0, 1, 1\}; h_{\Pi}(v_4) = \{1, 0, 1, 1, 1\}.$ Thus, since all vertices in $P_4 \odot C_4$ have distinct color code, then h is a 5-lc. So, $\chi_L(P_4 \odot C_4) \leq 5$ Therefore, we have $\chi_L(P_4 \odot C_4) = 5$.

Let h be 5-coloring in $P_5 \odot C_4$ as follows: $H_1 = \{u_1^1, u_2^1, u_3^3, v_5\}$, $H_2 = \{u_1^2, u_2^2, u_3^1, u_5^1\}$, $H_3 = \{u_1^3, u_2^4, u_5^2, v_3\}$, $H_4 = \{u_1^4, u_3^2, u_5^4, v_2\}$, $H_5 = \{u_2^3, u_3^4, u_5^3, v_1\}$. Then, the color codes of vertices are: $h_{\Pi}(u_1^1) = \{0, 1, 2, 1, 1\}$; $h_{\Pi}(u_1^2) = \{1, 0, 1, 2, 1\}$; $h_{\Pi}(u_1^3) = \{2, 1, 0, 1, 1\}$; $h_{\Pi}(u_1^4) = \{1, 2, 1, 0, 1\}$; $h_{\Pi}(u_2^1) = \{0, 1, 1, 1, 2\}$; $h_{\Pi}(u_2^2) = \{1, 0, 2, 1, 1\}$; $h_{\Pi}(u_2^3) = \{2, 1, 1, 1, 0\}$; $h_{\Pi}(u_2^4) = \{1, 2, 0, 1, 1\}$; $h_{\Pi}(u_3^1) = \{2, 0, 1, 1, 1\}$; $h_{\Pi}(u_3^2) = \{1, 1, 1, 0, 2\}$; $h_{\Pi}(u_3^3) = \{0, 2, 1, 1, 1\}$; $h_{\Pi}(u_3^4) = \{1, 1, 1, 2, 0\}$; $h_{\Pi}(u_4^1) = \{0, 1, 1, 2, 1\}$; $h_{\Pi}(u_4^2) = \{1, 1, 0, 1, 2\}$; $h_{\Pi}(u_4^3) = \{2, 1, 1, 0, 1\}$; $h_{\Pi}(u_4^4) = \{1, 1, 1, 2, 0\}$; $h_{\Pi}(u_4^1) = \{0, 1, 1, 2, 1\}$; $h_{\Pi}(u_4^2) = \{1, 1, 0, 1, 2\}$; $h_{\Pi}(u_4^3) = \{2, 1, 1, 0, 1\}$; $h_{\Pi}(u_4^4) = \{1, 1, 1, 2, 0\}$; $h_{\Pi}(u_4^1) = \{0, 1, 1, 2, 1\}$; $h_{\Pi}(u_4^2) = \{1, 1, 0, 1, 2\}$; $h_{\Pi}(u_4^3) = \{2, 1, 1, 0, 1\}$; $h_{\Pi}(u_4^4) = \{1, 1, 1, 2, 0\}$; $h_{\Pi}(u_4^1) = \{0, 1, 1, 2, 1\}$; $h_{\Pi}(u_4^2) = \{1, 1, 0, 1, 2\}$; $h_{\Pi}(u_4^3) = \{2, 1, 1, 0, 1\}$; $h_{\Pi}(u_4^4) = \{1, 1, 0, 1, 2\}$; $h_{\Pi}(u_4^4) = \{2, 1, 1, 0, 1\}$; $h_{\Pi}(u_4^4) = \{1, 1, 0, 1, 2\}$; $h_{\Pi}(u_4^4) = \{2, 1, 1, 0, 1\}$; $h_{\Pi}(u_4^4) = \{1, 1, 0, 1, 2\}$; $h_{\Pi}($

 $\{1, 1, 2, 1, 0\}; \ h_{\Pi}(u_5^1) = \{1, 0, 1, 1, 2\}; \ h_{\Pi}(u_4^2) = \{1, 1, 0, 2, 1\}; \ h_{\Pi}(u_4^3) = \{1, 2, 1, 1, 0\}; \ h_{\Pi}(u_4^4) = \{1, 1, 2, 0, 1\}; \ h_{\Pi}(v_1) = \{1, 1, 1, 1, 0\}; \ h_{\Pi}(v_2) = \{1, 1, 1, 0, 1\}; \ h_{\Pi}(v_3) = \{1, 1, 0, 1, 1\}; \ h_{\Pi}(v_4) = \{1, 0, 1, 1, 1\}; \ h_{\Pi}(v_5) = \{0, 1, 1, 1, 1\}.$ Thus, since all vertices in $P_5 \odot C_4$ have distinct color code, then h is a 5-lc. So, $\chi_L(P_5 \odot C_4) \leq 5$. Therefore, we have $\chi_L(P_5 \odot C_4) = 5$.

Case 2. $(n \ge 6)$ First we determine the lower bound of the *lcn* of $P_n \odot C_4$. Suppose *h* is a 5-lc of $P_6 \odot C_4$. Observe that $d(u_i^1, v) = d(u_i^4, v)$ where $v \notin \{u_i^1, u_i^4\}$ such that $\{h(u_i^k)\} = \{1, 2, 3, 4\} \setminus h(v_i)$. As a result, there are $h(u_a^m) = h(u_b^n)$ with $a \ne b$, $m \ne n$ and $h_{\Pi}(u_a^m) = h_{\Pi}(u_b^n)$, a contradiction with the condition of *lcn*. So, $\chi_L(P_n \odot C_4) \ge 6$ for $n \ge 6$.

Next, to determine the upper bound of the *lcn* of $P_n \odot C_4$ for $n \ge 6$. Let *h* be a coloring using 6 colors as follow:

$$h(u_k^l) = \begin{cases} 1 & \text{, for } k = 1 \text{ and } l = 1. \\ 2 & \text{, for } k = 1 \text{ and } l = 2; \ k = 2, \ 3, \dots, \ n \text{ and } l = 1. \\ 3 & \text{, for } k = 1 \text{ and } l = 3; \ k = 2, \ 3, \dots, \ n \text{ and } l = 2. \\ 4 & \text{, for } k = 1 \text{ and } l = 4; \ k = 2, \ 3, \dots, \ n \text{ and } l = 3. \\ 5 & \text{, for even } k \text{ and } l = 4. \\ 6 & \text{, for odd } k, \ k \neq 1 \text{ and } l = 4. \\ 6 & \text{, for odd } k. \\ 6 & \text{, for even } k. \end{cases}$$

Then, the color code of vertices are:
$$\begin{cases} 0 & \text{, } 5^{th} \text{ tuple; odd } k; \\ 6^{th} \text{ tuple; odd } k; \end{cases}$$

$$h_{\Pi}(v_k) = \begin{cases} , 6^{th} \text{ tuple; even } k. \\ 1 & , 2^{nd} \text{ tuple; } k = 1, 2, \dots, n; \\ , 3^{rd} \text{ tuple; } k = 1, 2, \dots, n; \\ , 4^{th} \text{ tuple; } k = 1, 2, \dots, n; \\ , 5^{th} \text{ tuple; even } k; \\ , 5^{th} \text{ tuple; odd } k. \\ (n-k) + 1 & , 6^{st} \text{ tuple; } 1 \le k \le n. \end{cases}$$

$$h_{\Pi}(u_k^l) = \begin{cases} 0 & , 1^{st} \text{ tuple; } k = 1 \text{ and } l = 1; \\ , 2^{st} \text{ tuple; } k \neq 1 \text{ and } l = 1; \\ , 3^{st} \text{ tuple; } k \neq 1 \text{ and } l = 3; \\ , 3^{st} \text{ tuple; } k \neq 1 \text{ and } l = 3; \\ , 3^{st} \text{ tuple; } k \neq 1 \text{ and } l = 2; \\ , 4^{th} \text{ tuple; } k \neq 1 \text{ and } l = 4; \\ , 4^{th} \text{ tuple; } k \neq 1 \text{ and } l = 3; \\ , 5^{th} \text{ tuple; } k \neq 1 \text{ and } l = 3; \\ , 5^{th} \text{ tuple; } k \neq 1 \text{ and } l = 4; \\ , 5^{th} \text{ tuple; } k \neq 1 \text{ and } l = 2, 4; \\ , 2^{st} \text{ tuple; } k = 1 \text{ and } l = 1, 3; \\ , 2^{st} \text{ tuple; } k \neq 1 \text{ and } l = 2, 4; \\ , 3^{st} \text{ tuple; } k \neq 1 \text{ and } l = 2, 4; \\ , 3^{st} \text{ tuple; } k \neq 1 \text{ and } l = 1, 3; \\ , 4^{th} \text{ tuple; } k \neq 1 \text{ and } l = 1, 3; \\ , 4^{th} \text{ tuple; } k \neq 1 \text{ and } l = 1, 3; \\ , 4^{th} \text{ tuple; } k \neq 1 \text{ and } l = 2, 4; \\ , 3^{st} \text{ tuple; } k \neq 1 \text{ and } l = 2, 3; \\ , 6^{sth} \text{ tuple; } k \neq 1 \text{ and } l = 2, 3; \\ , 6^{th} \text{ tuple; } k \neq 1 \text{ and } l = 2, 3; \\ , 6^{th} \text{ tuple; } k \neq 1 \text{ and } l = 2, 3; \\ , 6^{th} \text{ tuple; } k \neq 1 \text{ and } l = 3; \\ , 2^{std} \text{ tuple; } k \neq 1 \text{ and } l = 3; \\ , 2^{std} \text{ tuple; } k \neq 1 \text{ and } l = 3; \\ , 2^{std} \text{ tuple; } k \neq 1 \text{ and } l = 3; \\ , 3^{std} \text{ tuple; } k \neq 1 \text{ and } l = 3; \\ , 3^{std} \text{ tuple; } k \neq 1 \text{ and } l = 3; \\ , 3^{std} \text{ tuple; } k \neq 1 \text{ and } l = 1; \\ , 3^{std} \text{ tuple; } k \neq 1 \text{ and } l = 1; \\ , 3^{std} \text{ tuple; } k \neq 1 \text{ and } l = 2; \\ , 4^{th} \text{ tuple; } k \neq 1 \text{ and } l = 1; \\ , 5^{th} \text{ tuple; } k \neq 1 \text{ and } l = 1; \\ , 5^{th} \text{ tuple; } k \neq 1 \text{ and } l = 2; \\ , 6^{th} \text{ tuple; } k = 1 \text{ and } l = 1; \\ , 5^{th} \text{ tuple; } k \neq 1 \text{ and } l = 2; \\ , 6^{th} \text{ tuple; } k \neq 1 \text{ and } l = 2; \\ , 6^{th} \text{ tuple; } k \neq 1 \text{ and } l = 2; \\ , 6^{th} \text{ tuple; } k \neq 1 \text{ and } l = 2; \\ , 6^{th} \text{ tuple; } k \neq 1 \text{ and } l = 1; 2, 3, 4; \\ , 6^{th} \text{ tuple; } k \neq 1 \text{ and } l = 1, 2, 3, 4. \end{cases}$$

Since all vertices in $P_n \odot C_4$ have distinct color code, then h is a 6-lc. So, $\chi_L(P_n \odot C_4) \le 6$ for $n \ge 6$. Therefore $\chi_L(P_n \odot C_4) = 6$ for $n \ge 6$.

3. Conclusion

The *lcn* of $P_n \odot C_m$ is 5 for $m = 3, 3 \le n < 6$ and 6 for $n \ge 7$. Further, for m = 4 we have

Figure 2. A minimum lc of $P_6 \odot C_4$

5, where $3 \le n < 6$ and 6 for $n \ge 6$. This research can be continued to determine the locating chromatic number of $P_n \odot C_m$ for $m \ge 5$.

Acknowledgement

The research was supported by the Directorate of Higher Education, Ministry of Education and Culture, under contract No. 2624/UN26.21/PN/2023. The authors are thankful for the funding of the research.

References

- [1] Asmiati, H. Assiyatun, and E.T. Baskoro, Locating-chromatic number of amalgamation of stars, *ITB J.Sci.*, **43A** (2011), 1-8.
- [2] Asmiati, and E.T. Baskoro, Characterizing all graphs containing cycles with locatingchromatic number 3, *AIP Conf. Proc.*, **1450** (2012), 351-357.
- [3] Asmiati, H. Assiyatun, E.T. Baskoro, D. Suprijanto, R. Simanjuntak, and S. Uttunggadewa, Locating-chromatic number of firecracker graphs, *Far East Journal of Mathematical Sciences*, **3**(1) (2012), 11-23.
- [4] Asmiati, The locating-chromatic number of non-homogeneous amalgamation of stars. *Far East Journal of Mathematical Sciences*, **93(1)** (2014), 89-96.
- [5] Asmiati, On the locating-chromatic numbers of non homogeneous caterpillars and firecracker graphs, *Far East Journal of Mathematical Sciences*, **100(8)** (2016), 1305-1316.

- [6] Asmiati, I.K.S.G. Yana, L. Yulianti, On the Locating Chromatic Number of Some Barbell Graphs. *International Journal of Mathematics and Mathematical Sciences*, (2018),1-5.
- [7] Asmiati , I.S.G. Yana, and L. Yulianti, on the locating chromatic number of subdivision of barbell graphs containing generalized petersen graph, *International Journal of Computer Science and Network Security*, **19**(7) (2019), 45-50.
- [8] Asmiati, M. Damayanti, L. Yulianti, On the locating chromatic number of barbell shadow path graph, *Indonesian Journal of Combinatorics*, **5**(2) (2021), 82-93.
- [9] Asmiati, A.Irawan, A. Nuryaman, K. Muludi, The locating chromatic number for certain operation of origami graphs, *Mathematics and Statistics*, **11**(1) (2023), 101-106.
- [10] Asmiati, W. Okzarima, Notiragayu, L. Zakaria, Upper Bounds of the Locating Chromatic Numbers of Shadow Cycle Graphs, *International Journal of Mathematics and Computer Science*, **19**(1) (2024), 239-248.
- [11] E.T. Baskoro, and Asmiati, Characterizing all trees with locating-chromatic number 3, *Electronic Journal of Graph Theory and Applications*, **1**(2) (2013), 109-117.
- [12] A. Behtoei, B. Omoomi, On the locating chromatic number of cartesian product of Graphs, *Ars Combinatoria*, **126** (2016), 221-235.
- [13] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zhang, The locating-chromatic number of a graph, *Bull. Inst. Combin. Appl.*, 36 (2002), 89-101.
- [14] G. Chartrand, Erwin, M.A. Henning, J. Slater, P. Zhang, Graph of order n with locatingchromatic number n-1, *Discrete Math*, **269** (2003), 65-79.
- [15] R. Frucht, and F. Harary, On the corona of two graphs, *Aequationes mathematicae*, 4(3) (1970), 322-325.
- [16] M. Furuya, N. Matsumoto. Upper bounds on the locating chromatic number of trees. *Discrete Applied Mathematics*, **257**(2019), 338-341.
- [17] M. Ghanem, Al-ezeh, A. Dabour. Locating chromatic number of powers of path and cycles, Symmetry, 11(389) (2019), 2-6.
- [18] A. Irawan, Asmiati, L. Zakaria, and K. Muludi, The locating-chromatic number of origami graphs, *Algorithms*, 14(6) (2021), 1-15.
- [19] D. Welyyanti, R. Simanjuntak, R.S. Uttunggadewa, E.T. Baskoro. On locating-chromatic number for graphs with dominant vertices. *Proceedia Comput. Sci.*, 74 (2015), 89–92.
- [20] I.W. Sudarsana, F. Susanto, S. Musdalifah. The locating chromatic number for m-shadow of a connected graph. *Elec. J. of Graph Theory and Applications*, **10**(**2**) (2022), 589-601.
- [21] D.K. Syofyan, E.T. Baskoro, H. Assiyatun, On the locating-chromatic number of homogeneous lobsters. AKCE Int. J. Graphs Comb., 10 (2013), 245–252.