

Another *H*-super magic decompositions of the lexicographic product of graphs

Hendy^a, Kiki A. Sugeng^b, A.N.M. Salman^c, Nisa Ayunda^a

^aDepartment of Mathematics, Universitas Pesantren Tinggi Darul 'Ulum, Jombang, Indonesia ^bDepartment of Mathematics, Universitas Indonesia, Depok, Indonesia ^cDepartment of Mathematics, Institut Teknologi Bandung, Bandung, Indonesia

hendy@mipa.unipdu.ac.id, kiki@sci.ui.ac.id, msalman@math.itb.ac.id, nisaayunda@mipa.unipdu.ac.id

Abstract

Let H and G be two simple graphs. The concept of an H-magic decomposition of G arises from the combination between graph decomposition and graph labeling. A decomposition of a graph G into isomorphic copies of a graph H is H-magic if there is a bijection $f : V(G) \cup E(G) \longrightarrow$ $\{1, 2, ..., |V(G) \cup E(G)|\}$ such that the sum of labels of edges and vertices of each copy of H in the decomposition is constant. A lexicographic product of two graphs G_1 and G_2 , denoted by $G_1[G_2]$, is a graph which arises from G_1 by replacing each vertex of G_1 by a copy of the G_2 and each edge of G_1 by all edges of the complete bipartite graph $K_{n,n}$ where n is the order of G_2 . In this paper we provide a sufficient condition for $\overline{C_n[K_m]}$ in order to have a $P_t[\overline{K_m}]$ -magic decompositions, where n > 3, m > 1, and t = 3, 4, n - 2.

Keywords: complement of graph, lexicographic product, *H*-magic decomposition Mathematics Subject Classification: 05C78,05C70 DOI: 10.19184/ijc.2018.2.2.2

1. Introduction

Let G be a simple graph and H be a subgraph of G. A decomposition of G into isomorphic copies of H is called H- magic if there is a bijection $f: V(G) \cup E(G) \longrightarrow \{1, 2, ..., |V(G) \cup E(G)|\}$ such that the sum of labels of edges and vertices of each copy of H in the decomposition is

Received: 17 Oct 2017, Revised: 15 May 2018, Accepted: 08 Jun 2018.

constant. A lexicographic product of two graphs G_1 and G_2 is defined as graph which constructed from the graph G_1 and then replacing each vertex of G_1 by a copy of G_2 and each edge of G_1 by edges of complete bipartite graph $K_{n,n}$, where |V(G)| = n. The lexicographic product of G_1 and G_2 with this construction is denoted by $G_1[G_2]$ [1].

A labeling of a graph G = (V, E) is a bijection from a set of elements of graphs to a set of numbers. The edge magic and super edge magic labelings were first introduced by Kotzig and Roza [9] and Enomoto, Lladò, Nakamigawa, and Ringel [3], respectively. There are some results in edge magic and super edge magic, such as in [2, 3, 12, 13]. The notion of an H- (super) magic labeling was introduced by Gutièrrez and Lladò [5] in 2005. In 2010, Maryati and Salman [11] used multiset partition concept to obtain a super magic labeling of path amalgamation of isomorphic graphs. Inayah et al. [8]have improved the concept of labeling graphs became H-(anti) magic decomposition. In almost the same time, Liang [10] discused cycle-supermagic decompositions of complete multipartite graphs and in 2015, Hendy [6] has discused the H- super(anti)magic decompositions of antiprism graphs. For a complete results in graph labeling, see [4].

In this research we interest in decomposing the lexicographic product of graphs $\overline{C_n}[\overline{K_m}]$ then labeling of the edges and vertices of each isomorphic copies of $P_t[\overline{K_m}]$ to obtain $P_t[\overline{K_m}]$ – magic decomposition, where n > 3, m > 1, and t = 3, 4, n - 2.

Preliminaries

Let G be a simple graph. Complement of G, denoted by \overline{G} , is graph which $V(\overline{G}) = V(G)$ and $\forall u, v \in V(G) uv$ is edge of \overline{G} if and only if uv is not edge of G. A family $\mathbb{B} = \{G_1, G_2, ..., G_t\}$ of subgraphs of G is an H-decomposition of G if all subgraphs are isomorphic to graph $H, E(G_i) \cap E(G_j) = \emptyset$, for $i \neq j$, and $\bigcup_{i=1}^t E(G_i) = E(G)$. In such case, we write $G = G_1 \oplus G_2 \oplus ... \oplus G_t$ and G is said to be H-decomposable. if G is an H-decomposable graph, then we also write H|G.

Let \mathbb{B} is an *H*-decomposition of *G*. The graph *G* is said to be *H*-magic if there exists a bijection $f: V(G) \cup E(G) \longrightarrow \{1, 2, ..., |V(G) \cup E(G)|\}$ such that $\forall B \in \mathbb{B}, \sum_{v \in V(B)} f(v) + \sum_{e \in E(B)} f(e)$ is constant. Such a function *f* is called an *H*-magic labeling of *G*. The sum of all the vertex and edges labels of *H* (under a labeling *f*) is denoted by $\sum f(H)$. The constant value that every copy of *H* takes under the labeling *f* is denoted by m(f).

The one of the concept of multi set partition, k-balance multi set, was presented by Maryati et al. [11]. In this paper, $\sum_{x \in X} x$, denoted by $\sum X$. Multi set is a set which may has the same elements. For positive integer n and k_i with $i \in [1, n]$, multi set $\{a_1^{k_1}, a_2^{k_2}, ..., a_n^{k_n}\}$ is a set which has k_i elements a_i for $i \in [1, n]$. Suppose V and W are two multi sets with $V = \{a_1^{k_1}, a_2^{k_2}, ..., a_n^{k_n}\}$ and $W = \{b_1^{l_1}, b_2^{l_2}, ..., b_m^{l_m}\}$. Defined by: $V \biguplus W = \{a_1^{k_1}, a_2^{k_2}, ..., a_n^{k_n}, b_1^{l_1}, b_2^{l_2}, ..., b_m^{l_m}\}$. Let $k \in N$ and Y is a multi set of positive integers. Y is a k-balance multi set if there exists k subsets of Y such as: $Y_1, Y_2, ..., Y_k$, such that for all $i \in [1, k]$, $|Y_i| = \frac{|Y|}{k}$, $\sum Y_i = \frac{\sum Y}{k} \in N$ and $\biguplus_{i=1}^k Y_i = Y$. Lemma 1.1. [7] $P_n[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$ if and only if $P_n|\overline{C_n}$

Lemma 1.2. [7] Let t be any integer with t > 1. If $P_t[\overline{K_m}] | \overline{C_n}[\overline{K_m}]$ then $n(n-3) \equiv 0 \pmod{2(t-1)}$

Theorem 1.1. [7] Let n and m be integers with n > 3 and m > 1. The graph $\overline{C_n}[\overline{K_m}]$ has $P_2[\overline{K_m}]$ -super magic decomposition if and only if m is even or m is odd and $n \equiv 1 \pmod{4}$, or m is odd and $n \equiv 2 \pmod{4}$, or m is odd and $n \equiv 3 \pmod{4}$.

2. Results

Lemma 2.1. $P_3[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$ if and only if $n \neq 4$, $n \equiv 0 \pmod{4}$ or $n \equiv 3 \pmod{4}$.

Proof. (\Rightarrow) Let $P_3[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$, then from Lemma 2.1 we have that $P_3|\overline{C_n}$. From Lemma 2.2 we have that $n \equiv 0 \pmod{4}$ or $n \equiv 3 \pmod{4}$. Because of $\overline{C_4}$ doesn't have P_3 , this is not occur for n = 4.

(\Leftarrow) Now let $n \neq 4$, $n \equiv 0 \pmod{4}$ dan $V(\overline{C_n}) = \{v_1, ..., v_{4k}\}, k \in Z^+$. Let $N(v_i) = V(\overline{C_n}) \setminus \{v_{i-1}, v_{i+1}\}$. Follow this algorithm decompose $\overline{C_n}$.

Algorithm 1:

- 1 Choose the path $P_1: v_3 v_1 v_4$ and let v_1 be the center of the rotation. Rotate P_1 such that v_1 on v_3 , v_3 on v_5 and v_4 on v_6 , thus we have $P_2: v_5 v_3 v_6$. Do the next rotation until v_1 on $v_5, ..., v_{4i-1}, ..., v_{4k-1}$. Then we have 2k of P_3 -paths.
- 2 Choose the cycle $v_2 v_4 \dots v_{4k}$. Decompose this 2k-cycle to k of P_3 -paths.
- 3 Do the rotation again (v₁ → v₃ → v₅ →...), with choosing two vertices which close with the vertices that is rotated in step 1. If this rotation is not the last rotation, do the rotation again until v₁ on position of v_{4k-1}, such that we have 2k of P₃-path. If this rotation is the last rotation, first do the rotation in step 1 until v₁ on position of v_{2k-1} such that we have k of P₃-path. Then rotate P' = v_{n-2} v₂ v_{n-1} with v₂ as a center of this rotation until v₂ on position of v_{2k} and we have k P₃-path.

From the Algorithm 1 above, we have that $P_3|\overline{C_n}$. Then from Lemma 2.1 $P_3[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$ for $n \neq 4, n \equiv 0 \pmod{4}$.

Let $n \equiv 3(mod4) \text{ dan } V(\overline{C_n}) = \{v_1, ..., v_{4k+3}\}, k \in Z^+$. Let $N(v_i) = V(\overline{C_n}) \setminus \{v_{i-1}, v_{i+1}\}$. Decompose $\overline{C_n}$ with the following steps.

Algorithm 2

Choose the path $Q_1 = v_3 - v_1 - v_4$ with v_1 is the center of rotation. Rotate Q_1 such that v_1 on v_2 and we have $Q_2 = v_4 - v_2 - v_5$. Do the next rotation such that v_1 on $v_3, v_4, v_i, \dots, v_{4k+3}$. Do the rotation such that we have $kn P_3$ -path.

From Algorithm 2, it's clearly that $P_3|\overline{C_n}$. Thus from Lemma 2.1 $P_3[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$ for $n \equiv 3(mod4)$.

See Figure 1 to see graph $\overline{C_8}$ can be decomposed into 10 P_3 -path.

Theorem 2.1. Suppose $n, m \in Z^+$ and m > 1. For $n \equiv 3 \pmod{4}$, or $(n \equiv 0 \pmod{4})$ and m is even, Graph $\overline{C_n}[\overline{K_m}]$ have $P_3[\overline{K_m}]$ -magic decomposition.

Proof. Let $n \equiv 3 \pmod{4}$. From Lemma 2.1 we have for $n \equiv 3 \pmod{4}$, $P_3[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Let m be even. Do the next vertex labeling steps and edge labeling steps such in **case 1** in Theorem 2.1.

Let $V_1, V_2, ..., V_n$ be the partitions of $V(\overline{C_n}[\overline{K_m}])$, where $V(\overline{C_n}[\overline{K_m}]) = V_1 \cup V_2 \cup ... \cup V_n = \{v_{1,1}, v_{1,2}, ..., v_{1,m}\} \cup \{v_{2,1}, v_{2,2}, ..., v_{2,m}\} \cup ... \cup \{v_{n,1}, v_{n,2}, ..., v_{n,m}\}$. Consider the set $A^* = [1, mn] = V_1 \cup V_2 \cup ... \cup V_n = \{v_{1,1}, v_{1,2}, ..., v_{1,m}\} \cup \{v_{2,1}, v_{2,2}, ..., v_{2,m}\} \cup ... \cup \{v_{n,1}, v_{n,2}, ..., v_{n,m}\}$.

Figure 1. P_3 -decomposition of $\overline{C_8}$

 $[1, (2k)n], k \in \mathbb{Z}$. for every $i \in [1, n], A_i^* = \{a_i^i / 1 \le j \le m\}$, where

$$a^i_j \ = \ \left\{ \begin{array}{ll} k(j-1)+i, & \mbox{if j is odd;} \\ 1+nj-i, & \mbox{if j is even.} \end{array} \right.$$

is a balance subset of A^* .

Define a vertex labeling f_1 of $\overline{C_n}[\overline{K_m}]$ which will label vertices of $V_1, V_2, ..., V_n$ using elements of $A_1^*, A_2^*, \dots, A_n^*$ respectively.

Consider the set $B^* = [mn + 1, mn + \frac{n(n-3)m^2}{2}]$. For every $i \in [1, \frac{n(n-3)}{2}]$, $B_i^* = \{b_j^i/1 \le j \le m^2\}$, with $b_j^i = \begin{cases} mn + \frac{n(n-3)}{2}(j-1) + i, & \text{if j is odd;} \\ (mn+1) + (\frac{n(n-3)}{2})j - i, & \text{if j is even.} \end{cases}$

 $B_i^* = \{b_j^i/1 \le j \le m^2\}$ is a balance subset of B^* . Define an edge labeling f_2 of $\overline{C_n}[\overline{K_m}]$ with

label all edges in $P_2[\overline{K_m}]_i$, $i \in [1, \frac{n(n-3)}{2}]$ with the elements in B_i^* . Since for all $i \in [1, \frac{n(n-3)}{4}]$, $m(f_1 + f_2)(P_3[\overline{K_m}_i) = 3m(f_1) + 2m(f_2) = 3(m^2n + m) + 2(\frac{m^2}{2}(2mn + 1 + \frac{n(n-3)m^2}{2}) = 3m^2n + 3m + m^2(2mn + 1 + \frac{n(n-3)m^2}{2})$ then $\overline{C_n}[\overline{K_m}]$ has $P_3[\overline{K_m}]$ magic decomposition.

Now let m is odd. Do the vertex labeling steps and edge labeling steps such in case 4 in Theorem 2.1.

(a) Let m = 3. Consider the set $A = [1, m(n + \frac{n(n-3)}{2})] = [1, 3(n + \frac{n(n-3)}{2})]$. For every $i \in [1, (n + \frac{n(n-3)}{2})], A_i = \{a_i, b_i, c_i\}$ where

$$\begin{array}{rcl} a_{i} & = & 1+i; \\ b_{i} & = & \begin{cases} & (n+\frac{n(n-3)}{2}) + \lceil \frac{n(n-3)}{2} \rceil \rceil + i, & \text{ for } i \in [1, \lfloor \frac{n(n-3)}{2} \rceil]; \\ & (n+\frac{n(n-3)}{2}) - \lfloor \frac{n+\frac{n(n-3)}{2}}{2} \rfloor + i, & \text{ for } i \in [\lceil \frac{n+\frac{n(n-3)}{2}}{2} \rceil, (n+\frac{n(n-3)}{2})]. \\ c_{i} & = & \begin{cases} & 3(n+\frac{n(n-3)}{2}) + 1 - 2i, & \text{ for } i \in [1, \lfloor \frac{n+\frac{n(n-3)}{2}}{2} \rceil]; \\ & 3(n+\frac{n(n-3)}{2}) + 2\lceil \frac{n+\frac{n(n-3)}{2}}{2} \rceil - 2i, & \text{ for } i \in [\lceil \frac{n+\frac{n(n-3)}{2}}{2} \rceil, n+\frac{n(n-3)}{2}]. \end{cases} \end{array}$$

 $A_i = \{a_i, b_i, c_i\}$ is a balance subset of A. Consider the set $B = [3(n + \frac{n(n-3)}{2}) + 1, 3n + (\frac{n(n-3)}{2})m^2]$. For every $i \in [1, \frac{n(n-3)}{2}], B_i = \{b_j^i/1 \le j \le m^2 - 3\}$, where

$$b_j^i = \begin{cases} 3(n + \frac{n(n-3)}{2}) + (n + \frac{n(n-3)}{2})(j-1) + i, & \text{if j is odd;} \\ 3(n + \frac{n(n-3)}{2}) + 1 + (n + \frac{n(n-3)}{2})j - i, & \text{if j is even.} \end{cases}$$

 $B_i = \{b_j^i/1 \le j \le m^2 - 3\} \text{ is a balance subset of } B. \text{ Define a function } h_1 : V(\overline{C_n}[\overline{K_m}]) \to \{A_i, i \in [1, n]\} \subset A \text{ and label all vertices in every } V_i \text{ with the elements of } A_i. \text{ Define a function } h_2 : E(\overline{C_n}[\overline{K_m}]) \to \{A_i, i \in [n + 1, (n + \frac{n(n-3)}{2})]\} \bigcup B \text{ and label all edges in every } P_2[\overline{K_m}]_i, i \in [1, \frac{n(n-3)}{2}] \text{ with the elements of } A_{n+i} \bigcup B_i.$

(b) Let m > 3 and m be odd. Considering the set $A^* = [1, m(n + \frac{n(n-3)}{2})]$. Divide A^* to be two sets. $\begin{array}{rcl} A &=& [1, 3(n + \frac{n(n-3)}{2})];\\ E &=& [3(n + \frac{n(n-3)}{2}) + 1, m(n + \frac{n(n-3)}{2})]. \end{array}$

Follow the same way with (a), for m = 3, A is a $\left(n + \frac{n(n-3)}{2}\right)$ -balance multi set and for every $i \in \left[1, \left(n + \frac{n(n-3)}{2}\right)\right]$, A_i is a balance subset of A. Consider the set $E = \left[3\left(n + \frac{n(n-3)}{2}\right) + 1, m\left(n + \frac{n(n-3)}{2}\right)\right]$. For every $i \in \left[1, \left(n + \frac{n(n-3)}{2}\right)\right]$, $E_i = \left\{e_j^i/1 \le j \le m-3\right\}$, where

$$e_j^i = \begin{cases} 3(n + \frac{n(n-3)}{2}) + (n + \frac{n(n-3)}{2})(j-1) + i, & \text{if j is odd;} \\ 3(n + \frac{n(n-3)}{2}) + 1 + (n + \frac{n(n-3)}{2})j - i, & \text{if j is even.} \end{cases}$$

$$\begin{split} E_i &= \{ e_j^i / 1 \le j \le m-3 \} \text{ is a balance subset of } E. \text{ Considering the set } M = [m(n + \frac{n(n-3)}{2}) + 1, m^2(n + \frac{n(n-3)}{2}) + mn]. \text{ For every } i \in [1, \frac{n(n-3)}{2}], M_i = \{ m_j^i / 1 \le j \le m^2 - m \}, \text{ where } m_j^i = \begin{cases} m(n + \frac{n(n-3)}{2}) + (\frac{n(n-3)}{2})(j-1) + i, & \text{if j is odd;} \\ m(n + \frac{n(n-3)}{2}) + 1 + (\frac{n(n-3)}{2})j - i, & \text{if j is even.} \end{cases} \end{split}$$

 $M_i = \{m_j^i/1 \le j \le m^2 - m\}$ is a balance subset of M.

Define a function $q_1 : V(\overline{C_n}[\overline{K_m}]) \to \{A_i^* = A_i \bigcup E_i, i \in [1, n]\} \subset A^*$ and label all vertices in every V_i with the elements of $\{A_i^*, i \in [1, n]\}$. Define a function $q_2 : E(\overline{C_n}[\overline{K_m}]) \to \{A_{n+i}^* = A_{n+i} \bigcup E_{n+i}\} \bigcup M$ and label all edges in every $P_2[\overline{K_m}]_i$, $i \in [1, \frac{n(n-3)}{2}]$ with the elements of $A_{n+i}^* \bigcup M_i$.

Since $\forall i \in [1, \frac{n(n-3)}{4}], (q_1 + q_2)(P_3[\overline{K_m}]_i) = 5\sum_{i=1}^{\infty} A_i^* + 2\sum_{i=1}^{\infty} M_i = 5(\sum_{i=1}^{\infty} A_i + \sum_{i=1}^{\infty} E_i) = 5((2+4n+2n(n-3)+\lceil\frac{2n+n(n-3)}{4}\rceil)+(\frac{m-3}{2})(3(n+\frac{n(n-3)}{2})+1+m(n+\frac{n(n-3)}{2})))+2(\frac{m^2-m}{2}(m(n+\frac{n(n-3)}{2})+1+m^2(n+\frac{n(n-3)}{2})+mn)) \text{ then } \overline{C_n}[\overline{K_m}] \text{ has } P_3[\overline{K_m}]\text{-magic decomposition.}$ Now let $n \equiv 0 \pmod{4}$ and m be even. From Lemma 3, we have for $n \equiv 0 \pmod{4}, P_3[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Do the vertex labeling steps and edge labeling steps such in **case 1** in Theorem 2.1. Since for all $i \in [1, \frac{n(n-3)}{4}], m(f_1 + f_2)(P_3[\overline{K_m}] = 3m(f_1) + 2m(f_2) = 3(m^2n + m) + 2(\frac{m^2}{2}(2mn + 1 + \frac{n(n-3)m^2}{2})) = 3m^2n + 3m + m^2(2mn + 1 + \frac{n(n-3)m^2}{2}), \text{ then } \overline{C_n}[\overline{K_m}] \text{ have } P_3[\overline{K_m}]\text{-magic decomposition.}$

Figure 2 give an example that graph $\overline{C_8}[\overline{K_2}]$ have $P_3[\overline{K_2}]$ - super magic decomposition with the constant value $m(f_1 + f_2) = 503$.

Figure 2. $P_3[\overline{K_2}]$ -super magic decomposition of $\overline{C_8}[\overline{K_2}]$

Lemma 2.2. $P_4[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$ if and only if $n \equiv 0 \pmod{6}$ or $n \neq 3, n \equiv 3 \pmod{6}$

Proof. (\Rightarrow) Let $P_4[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$, then from Lemma 2.1, $P_4|\overline{C_n}$. From Lemma 2.2 $n \equiv 0 \pmod{6}$ or $n \equiv 3 \pmod{6}$. Clearly that this is not occur for n = 3.

 (\Leftarrow) Let $V(\overline{C_n}) = \{v_1, ..., v_{3k}\}, k \in Z^+$ and $N(v_i) = V(\overline{C_n}) \setminus \{v_{i-1}, v_{i+1}\}$. Do the algorithm 3 bellow to decompose $\overline{C_n}$.

Algorithm 3

Choose the path $R_1: v_1 - v_3 - v_6 - v_4$ and let v_1 be the center of the rotation. Rotate R_1 such that v_1 on v_2, v_3 on v_4, v_6 on v_1 and v_4 on v_5 , thus we have $R_2 = v_2 - v_4 - v_1 - v_5$. Do the next rotation such that v_1 on v_3 ,...etc, and redo the process until $\frac{(k-1)}{2}$ rotations.

Figure 3 shows that graph $\overline{C_9}$ can be decompose into 9 P_4 -path.

Theorem 2.2. Let n > 3 and m > 1. For $n \equiv 3 \pmod{12}$ or $n \equiv 6 \pmod{12}$ or $n \equiv 9 \pmod{12}$ or $(n \equiv 0 \pmod{12})$ and m is even, Graph $\overline{C_n}[\overline{K_m}]$ have $P_4[\overline{K_m}]$ -magic decomposition

Proof. Let $n \equiv 3 \pmod{12}$. From Lemma 2.2, we have that for $n \equiv 3 \pmod{12}$, $P_4[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Now, let m be even. Do the next vertex labeling steps and edge labeling steps such in **case 1** in Theorem 2.1. Since for all $i \in [1, \frac{n(n-3)}{6}]$, $(f_1 + f_2)(P_4[\overline{K_m}]) = 4m(f_1) + 3m(f_2) = 4(m^2n + m) + 3(\frac{m^2}{2}(2mn + 1 + \frac{n(n-3)m^2}{2}))$ then $\overline{C_n}[\overline{K_m}]$ have $P_4[\overline{K_m}]$ -magic decomposition.

Let *m* be odd. Do the next vertex labeling steps and edge labeling steps such in **case 4** in Theorem 2.1. Since for all $i \in [1, \frac{n(n-3)}{6}]$, $m(q_1 + q_2)(P_4[\overline{K_m}]_i) = 7\sum_{i} A_i^* + 3\sum_{i} M_i = 7(2 + 4n + 2n(n-3) + \lceil \frac{2n+n(n-3)}{4}\rceil) + (\frac{m-3}{2})(3(n + \frac{n(n-3)}{2}) + 1 + m(n + \frac{n(n-3)}{2})) + \frac{3m^2 - 3m}{2}(m(n + \frac{n(n-3)}{2}) + 1 + m^2(n + \frac{n(n-3)}{2}) + mn)$, then $\overline{C_n}[\overline{K_m}]$ has $P_4[\overline{K_m}]$ -magic decomposition.

Figure 3. P_4 -decomposition of $\overline{C_9}$

Let $n \equiv 6 \pmod{12}$. From Lemma 2.2, we have that $n \equiv 6 \pmod{12}$, $P_4[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Now let m is even. Do the vertex labeling steps and edge labeling steps in **case 1** Theorem 1. Because $\forall i \in [1, \frac{n(n-3)}{6}], (f_1 + f_2)(P_4[\overline{K_m}]) = 4 \sum Z_i + 3 \sum X_i$ then $\overline{C_n}[\overline{K_m}]$ have $P_4[\overline{K_m}]$ -magic decomposition. Let m is odd. Do the vertex labeling steps and edge labeling steps such in **case 3** in Theorem 2.1.

Let m = 3. Consider the set $D = [1, m(n + \frac{n(n-3)}{2})] = [1, 3(n + \frac{n(n-3)}{2})]$. For every $i \in [1, (n + \frac{n(n-3)}{2})]$, $D_i = \{a_i, b_i, c_i\}$ where: $a_i = 1 + i;$ $b_i = \begin{cases} (n + \frac{n(n-3)}{2}) + \lceil \frac{n(n-3)}{2} \rceil \rceil + i, & \text{for } i \in [1, \lfloor \frac{n(n-3)}{2} \rceil \rceil]; \\ (n + \frac{n(n-3)}{2}) - \lfloor \frac{n + \frac{n(n-3)}{2}}{2} \rfloor + i, & \text{for } i \in [\lceil \frac{n + \frac{n(n-3)}{2}}{2} \rceil], (n + \frac{n(n-3)}{2})]. \end{cases}$ $c_i = \begin{cases} 3(n + \frac{n(n-3)}{2}) + 1 - 2i, & \text{for } i \in [1, \lfloor \frac{n + \frac{n(n-3)}{2}}{2} \rfloor]; \\ 3(n + \frac{n(n-3)}{2}) + 2\lceil \frac{n + \frac{n(n-3)}{2}}{2} \rceil - 2i, & \text{for } i \in [\lceil \frac{n + \frac{n(n-3)}{2}}{2} \rceil, n + \frac{n(n-3)}{2}]. \end{cases}$ $D_i = \{a_i, b_i, c_i\}$ is a balance subset of D. Considering the set $E = [3(n + \frac{n(n-3)}{2}) + 1, 3n + (\frac{n(n-3)}{2})m^2]$. For every $i \in [1, \frac{n(n-3)}{2}], E_i = \begin{cases} 3(n + \frac{n(n-3)}{2}) + 1, 3n + (\frac{n(n-3)}{2}) + (n + \frac{n(n-3)}{2})(j-1) + i, & \text{if } j \text{ is odd}; \end{cases}$

$$\{b_j^i/1 \le j \le m^2 - 3\}$$
, with $b_j^i = \begin{cases} 3(n + \frac{2}{3}) + (n + \frac{2}{2})(j - 1) + i, & \text{if j is odd,} \\ 3(n + \frac{n(n-3)}{2}) + 1 + (n + \frac{n(n-3)}{2})j - i, & \text{if j is even.} \end{cases}$

 E_i is a balance subset of E.

Define a function $h_1 : V(\overline{C_n}[\overline{K_m}]) \to \{A_i, i \in [1, n]\} \subset A$ and label all vertices in every V_i with the elements of A_i . Define a function $h_2 : E(\overline{C_n}[\overline{K_m}]) \to \{A_i, i \in [n+1, (n+\frac{n(n-3)}{2})]\} \bigcup B$ and label all edges in $P_2[\overline{K_m}]_i, i \in [1, \frac{n(n-3)}{2}]$ with the elements of $A_{n+i} \bigcup B_i$.

Let m > 3 and m be odd. Consider the set $A^* = [1, m(n + \frac{n(n-3)}{2})]$. Divide A^* to be the two

sets A and E where $\begin{array}{rcl} A &=& [1,3(n+\frac{n(n-3)}{2})];\\ E &=& [3(n+\frac{n(n-3)}{2})+1,m(n+\frac{n(n-3)}{2})]. \end{array}$

With the same way for m = 3, A is $\left(n + \frac{n(n-3)}{2}\right)$ -balance set and for every $i \in \left[1, \left(n + \frac{n(n-3)}{2}\right)\right]$, A_i is a balance subset of A. Consider the set $E = [3(n + \frac{n(n-3)}{2}) + 1, m(n + \frac{n(n-3)}{2})]$. For every $i \in [1, (n + \frac{n(n-3)}{2})], E_i = \{e_j^i/1 \le j \le m-3\},$ where

$$e_j^i = \begin{cases} 3(n + \frac{n(n-3)}{2}) + (n + \frac{n(n-3)}{2})(j-1) + i, & \text{if j is odd;} \\ 3(n + \frac{n(n-3)}{2}) + 1 + (n + \frac{n(n-3)}{2})j - i, & \text{if j is even.} \end{cases}$$

 $E_i = \{e_j^i/1 \le j \le m-3\}$ is a balance subset of E. Considering the set $M = [m(n + \frac{n(n-3)}{2}) +$ $1, m^2(n + \frac{n(n-3)}{2}) + mn]$. For every $i \in [1, \frac{n(n-3)}{2}], M_i = \{m_j^i/1 \le j \le m^2 - m\}$, where $m_{j}^{i} = \begin{cases} \frac{1}{m(n + \frac{n(n-3)}{2}) + (\frac{n(n-3)}{2})(j-1) + i, & \text{if j is odd;} \\ \frac{n(n + \frac{n(n-3)}{2}) + 1 + (\frac{n(n-3)}{2})j - i, & \text{if j is even.} \end{cases}$

is a balance subset of M. Define a function $q_1: V(\overline{C_n}[\overline{K_m}]) \to \{A_i^* = A_i \bigcup E_i, i \in [1, n]\} \subset \mathbb{C}$ A^* and label all vertices in every V_i with the elements of $\{A_i^*, i \in [1, n]\}$.

Define a function $q_2: E(\overline{C_n}[\overline{K_m}]) \to \{A_{n+i}^* = A_{n+i} \bigcup E_{n+i}\} \bigcup M$ and label all edges in every

 $P_{2}[\overline{K_{m}}]_{i}, i \in [1, \frac{n(n-3)}{2}] \text{ with the elements of } A_{n+i}^{*} \bigcup M_{i}.$ Since for all $i \in [1, \frac{n(n-3)}{6}], (q_{1}+q_{2})(P_{4}[\overline{K_{m}}]_{i}) = 7 \sum A_{i}^{*} + 3 \sum M_{i} \text{ then } \overline{C_{n}}[\overline{K_{m}}] \text{ has } P_{4}[\overline{K_{m}}].$ magic decomposition.

Now let $n \equiv 9(mod12)$. From Lemma 2.2 we have that for $n \equiv 9(mod12)$, $P_4[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Now, let *m* be even. Do the vertex labeling steps and edge labeling steps such in **case 1** in Theorem 2.1. Because $\forall i \in [1, \frac{n(n-3)}{6}], (f_1 + g)(P_4[\overline{K_{m_i}}) = 4\sum Z_i + 3\sum X_i$ then $\overline{C_n}[\overline{K_m}]$ have $P_4[\overline{K_m}]$ -magic decomposition. Suppose *m* is odd. Do the vertex labeling steps and edge labeling steps such in **case 2** of Theorem 2.1. Since for all $i \in [1, \frac{n(n-3)}{6}], (f_2 + h)(P_4[\overline{K_m}]_i) = 3\sum Y_i + 2\sum P_i^*$ and $(f_3+h)(P_4[\overline{K_m}]_i) = 3(\sum W_i + \sum X_i) + 2\sum P_i^*$ then $\overline{C_n}[\overline{K_m}]$ has $P_4[\overline{K_m}]$ -magic decomposition.

Now let $n \equiv 0 \pmod{12}$ and m be even. Clearly from Lemma 2.2 that for $n \equiv 0 \pmod{12}$, $P_4[\overline{K_m}]|\overline{C_n}[\overline{K_m}]|$. Do the vertex labeling steps and edge labeling steps such in **case 1** of Theorem 1. Because $\forall i \in [1, \frac{n(n-3)}{6}], (f_1+g)(P_4[\overline{K_{mi}}) = 4\sum Z_i + 3\sum X_i \text{ then } \overline{C_n}[\overline{K_m}] \text{ have } P_4[\overline{K_m}] \text{-magic}$ decomposition.

Lemma 2.3. $P_{n-2}[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$ if and only if $n \equiv 0 \pmod{2}$

Proof. (
$$\Rightarrow$$
) Suppose $\overline{C_n}$ where $n \equiv 1 \pmod{2}$ are P_{n-2} -decomposable graphs, then

$$\frac{|E(\overline{C_n})|}{3} = \frac{(2k+1)(2k-2)/(2)}{2k-2}, s \in Z^+$$

$$= \frac{2k+1}{2}$$

$$= k + \frac{1}{2} \notin Z^+.$$
(contradiction)

(contradiction).

 (\Leftarrow) Let $V(\overline{C_n}) = \{v_1, ..., v_{2k}\}, k \in \mathbb{Z}^+$ and $N(v_i) = V(\overline{C_n}) \setminus \{v_{i-1}, v_{i+1}\}$. Do the next steps to decompose $\overline{C_n}$. Choose the path $L_1 = v_1 - v_3 - v_n - v_4 - v_{n-1} - \dots$ and let v_1 be the center of the rotation. Rotate L1 such that v_1 on v_2 , v_3 on v_4 , v_n on v_1 and etc. Do the next rotation such that v_1 on v_3 ,...etc, and continue the process until all edge are used up.

Figure 4. P_9 -decomposition of $\overline{C_{12}}$

For example, $\overline{C_{12}}$ in Figure 4 can be decomposed to be 6 P_9 -path.

Theorem 2.3. Let n > 3 and m > 1. For $n \equiv 2 \pmod{4}$ or $(n \equiv 0 \pmod{4})$ and m is even), $\overline{C_n}[\overline{K_m}]$ have $P_{n-2}[\overline{K_m}]$ -magic decomposition.

Proof. Let $n \equiv 2 \pmod{4}$. From Lemma 2.2 we have that for $n \equiv 2 \pmod{4}$, $P_{n-2}[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Now, let m is even. Do the vertex labeling steps and edge labeling steps such in **case 1** of Theorem 2.1. Because of $\forall i \in [1, \frac{n}{2}], (f_1 + f_2)(P_{n-2}[\overline{K_m}]) = (n-2)m(f_1) + (n-3)m(f_2) = (n-2)(m^2n + m) + (n-3)(\frac{m^2}{2}(2mn + 1 + \frac{n(n-3)m^2}{2}))$. Thus $\overline{C_n}[\overline{K_m}]$ has $P_{n-2}[\overline{K_m}]$ -magic decomposition. Let m be odd. Do the vertex labeling steps and edge labeling steps such in **case 3** of Theorem

Let *m* be odd. Do the vertex labeling steps and edge labeling steps such in **case 3** of Theorem 2.1. Since for all $i \in [1, \frac{n}{2}]$, $(q_1+q_2)(P_{n-2}[\overline{K_{mi}}) = (2n-5)\sum A_i^* + (n-3)\sum M_i = (2n-5)((2+4n+2n(n-3)+\lceil\frac{2n+n(n-3)}{4}\rceil) + (\frac{m-3}{2})(3(n+\frac{n(n-3)}{2})+1+m(n+\frac{n(n-3)}{2}))) + (n-3)(\frac{m^2-m}{2}(m(n+\frac{n(n-3)}{2})+1+m^2(n+\frac{n(n-3)}{2})+mn))$. Thus $\overline{C_n}[\overline{K_m}]$ has $P_4[\overline{K_m}]$ -magic decomposition. Now let $n \equiv 0 \pmod{4}$ and *m* be even. Clearly from Lemma 2.2 that for $n \equiv 0 \pmod{4}$,

Now let $n \equiv 0 \pmod{4}$ and m be even. Clearly from Lemma 2.2 that for $n \equiv 0 \pmod{4}$, $P_{n-2}[\overline{K_m}]|\overline{C_n}[\overline{K_m}]$. Do the vertex labeling steps and edge labeling steps such in **case 1** of Theorem 2.1. Since for all $i \in [1, \frac{n}{2}]$, $(f_1 + f_2)(P_{n-2}[\overline{K_m}]) = (n-2)m(f_1) + (n-3)m(f_2) = (n-2)(m^2n + m) + (n-3)(\frac{m^2}{2}(2mn+1+\frac{n(n-3)m^2}{2}))$. Thus $\overline{C_n}[\overline{K_m}]$ has $P_{n-2}[\overline{K_m}]$ -magic decomposition. \Box

Acknowledgement

This research was supported by Research Grant "Program Hibah Penelitian Kerjasama Antar Perguruan Tinggi (Pekerti) Unipdu-UI 2017 ", Ministry of Research, Technology and Higher Education No: 025/E3/2017.

References

- [1] D. Fronček, P. Kovář, T. Kovářová, Constructing Distance Magic Graphs From Regular Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing. 78 (2011), 349-354
- [2] M. Bača, M. Miller, Super edge-antimagic graphs, Brown Walker Press, Boca Raton, Florida USA (2008).
- [3] H. Enomoto, A. Lladó, T. Nakamigawa, G. Ringel, Super edge magic graphs, SUT Journal of Mathematics. 34 (1998), 105–109.
- [4] J. A Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics. #DS6, 2016.
- [5] Gutiérrez, A. Lladó, A Magic Coverings, Journal of Combinatorial Mathematics and Combinatorial Computing. 55 (2005) 43-56
- [6] Hendy, The H- super (anti) magic Decomposition of Antiprism graphs, AIP Conference Proceedings 1707. 020007(2016); DOI: 10.1063/1.4940808.
- [7] Hendy, An H-super magic Decompositions of The Lexicographic Product of Graphs, preprint.
- [8] Inayah, A. Lladó, J. Moragas, Magic and Antimagic H-decompositions, *Discrete Math.* 312 (2012) 1367-1371.
- [9] A. Kotzig, A. Rosa, Magic valuation of finite graphs, *Canadian Mathematics Bulletin.* 13, (1970) 451-461.
- [10] Z. Liang, Cycle-supermagic decompositions of Complete multipartite Graphs, *Discrete Mathematics.* **312**, (2012) 3342–3348.
- [11] T.K. Maryati, A.N.M. Salman, On graph-(super)magic labelings of a path-amalgamation of isomorphic graphs, Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications. (2010) 228-233.
- [12] K.A. Sugeng, Magic and Antimagic labeling of graphs, University of Ballarat, (2005).
- [13] W.D. Wallis, Magic Graphs, Birkhäuser Boston, Basel, Berlin (2001).