Another H-super magic decompositions of the lexicographic product of graphs

Hendya, Kiki A. Sugengb, A.N.M. Salmanc, Nisa Ayundaa

aDepartment of Mathematics, Universitas Pesantren Tinggi Darul 'Ulum, Jombang, Indonesia
bDepartment of Mathematics, Universitas Indonesia, Depok, Indonesia
cDepartment of Mathematics, Institut Teknologi Bandung, Bandung, Indonesia

hendy@mipa.unipdu.ac.id, kiki@sci.ui.ac.id, msalman@math.itb.ac.id, nisaayunda@mipa.unipdu.ac.id

Abstract

Let H and G be two simple graphs. The concept of an H-magic decomposition of G arises from the combination between graph decomposition and graph labeling. A decomposition of a graph G into isomorphic copies of a graph H is H-magic if there is a bijection $f : V(G) \cup E(G) \rightarrow \{1, 2, ..., |V(G) \cup E(G)|\}$ such that the sum of labels of edges and vertices of each copy of H in the decomposition is constant. A lexicographic product of two graphs G_1 and G_2, denoted by $G_1[G_2]$, is a graph which arises from G_1 by replacing each vertex of G_1 by a copy of the G_2 and each edge of G_1 by all edges of the complete bipartite graph $K_{n,n}$ where n is the order of G_2. In this paper we provide a sufficient condition for $C_n[K_m]$ in order to have a $P_t[K_m]$-magic decompositions, where $n > 3, m > 1$, and $t = 3, 4, n - 2$.

Keywords: complement of graph, lexicographic product, H-magic decomposition
Mathematics Subject Classification: 05C78, 05C70
DOI: 10.19184/ijc.2018.2.2.2

1. Introduction

Let G be a simple graph and H be a subgraph of G. A decomposition of G into isomorphic copies of H is called H-magic if there is a bijection $f : V(G) \cup E(G) \rightarrow \{1, 2, ..., |V(G) \cup E(G)|\}$ such that the sum of labels of edges and vertices of each copy of H in the decomposition is constant.
constant. A lexicographic product of two graphs G_1 and G_2 is defined as graph which constructed from the graph G_1 and then replacing each vertex of G_1 by a copy of G_2 and each edge of G_1 by edges of complete bipartite graph $K_{n,n}$, where $|V(G)| = n$. The lexicographic product of G_1 and G_2 with this construction is denoted by $G_1[G_2]$ [1].

A labeling of a graph $G = (V, E)$ is a bijection from a set of elements of graphs to a set of numbers. The edge magic and super edge magic labelings were first introduced by Kotzig and Roza [9] and Enomoto, Lladò, Nakamigawa, and Ringel [3], respectively. There are some results in edge magic and super edge magic, such as in [2, 3, 12, 13]. The notion of an H (super) magic labeling was introduced by Gutiérrez and Lladó [5] in 2005. In 2010, Maryati and Salman [11] used multiset partition concept to obtain a super magic labeling of path amalgamation of isomorphic graphs. Inayah et al. [8] have improved the concept of labeling graphs became H-(anti) magic decomposition. In almost the same time, Liang [10] discussed cycle-supermagic decompositions of complete multipartite graphs and in 2015, Hendy [6] has discussed the H- super(anti)magic decompositions of antiprism graphs. For a complete results in graph labeling, see [4].

In this research we interest in decomposing the lexicographic product of graphs $C_n[K_m]$ then labeling of the edges and vertices of each isomorphic copies of $P_t[K_m]$ to obtain $P_t[K_m]$—magic decomposition, where $n > 3, m > 1$, and $t = 3, 4, n - 2$.

Preliminaries

Let G be a simple graph. Complement of G, denoted by \overline{G}, is graph which $V(\overline{G}) = V(G)$ and $\forall u, v \in V(G)$ uv is edge of \overline{G} if and only if uv is not edge of G. A family $\mathbb{B} = \{G_1, G_2, ..., G_t\}$ of subgraphs of G is an H-decomposition of G if all subgraphs are isomorphic to graph H, $E(G_i) \cap E(G_j) = \emptyset$, for $i \neq j$, and $\bigcup_{i=1}^t E(G_i) = E(G)$. In such case, we write $G = G_1 \oplus G_2 \oplus ... \oplus G_t$ and G is said to be H-decomposable. if G is an H-decomposable graph, then we also write $H|G$.

Let \mathbb{B} be an H-decomposition of G. The graph G is said to be H-magic if there exists a bijection $f : V(G) \cup E(G) \rightarrow \{1, 2, ..., |V(G) \cup E(G)|\}$ such that $\forall B \in \mathbb{B}, \sum_{v \in V(B)} f(v) + \sum_{e \in E(B)} f(e)$ is constant. Such a function f is called an H-magic labeling of G. The sum of all the vertex and edges labels of H (under a labeling f) is denoted by $\sum f(H)$. The constant value that every copy of H takes under the labeling f is denoted by $m(f)$.

The one of the concept of multi set partition, k-balance multi set, was presented by Maryati et al. [11]. In this paper, $\sum_{x \in X} x$, denoted by $\sum X$. Multi set is a set which may has the same elements. For positive integer n and k_i with $i \in [1, n]$, multi set $\{a_1^{k_1}, a_2^{k_2}, ..., a_n^{k_n}\}$ is a set which has k_i elements a_i for $i \in [1, n]$. Suppose V and W are two multi sets with $V = \{a_1^{k_1}, a_2^{k_2}, ..., a_n^{k_n}\}$ and $W = \{b_1^{k_1}, b_2^{k_2}, ..., b_m^{k_m}\}$. Defined by: $V \uplus W = \{a_1^{k_1}, a_2^{k_2}, ..., a_n^{k_n}, b_1^{k_1}, b_2^{k_2}, ..., b_m^{k_m}\}$. Let $k \in N$ and Y is a multi set of positive integers. Y is a k-balance multi set if there exists k subsets of Y such as: $Y_1, Y_2, ..., Y_k$, such that for all $i \in [1, k]$, $|Y_i| = \frac{|Y|}{k}$, $\sum Y_i = \sum_k Y_i \in N$ and $\{Y_1, Y_2, ..., Y_k\} = Y$.

Lemma 1.1. [7] $P_t[K_m]|C_n[K_m]$ if and only if $P_t|C_n$

Lemma 1.2. [7] Let t be any integer with $t \geq 1$. If $P_t[K_m]|C_n[K_m]$ then $n(n-3) \equiv 0(\text{mod} 2(t-1))$

Theorem 1.1. [7] Let n and m be integers with $n > 3$ and $m > 1$. The graph $C_n[K_m]$ has $P_2[K_m]$-super magic decomposition if and only if m is even or m is odd and $n \equiv 1(\text{mod} 4)$, or m is odd and $n \equiv 2(\text{mod} 4)$, or m is odd and $n \equiv 3(\text{mod} 4)$.

73
2. Results

Lemma 2.1. $P_3[K_m]|C_n[K_m]$ if and only if $n \neq 4$, $n \equiv 0(\text{mod} 4)$ or $n \equiv 3(\text{mod} 4)$.

Proof. (⇒) Let $P_3[K_m]|C_n[K_m]$, then from Lemma 2.1 we have that $P_3|C_n$. From Lemma 2.2 we have that $n \equiv 0(\text{mod} 4)$ or $n \equiv 3(\text{mod} 4)$. Because of C_4 doesn’t have P_3, this is not occur for $n = 4$.

(⇐) Now let $n \neq 4$, $n \equiv 0(\text{mod} 4)$ dan $V(C_n) = \{v_1, ..., v_{4k}\}$, $k \in \mathbb{Z}^+$. Let $N(v_i) = V(C_n) \setminus \{v_{i-1}, v_{i+1}\}$. Follow this algorithm decompose C_n.

Algorithm 1:

1. Choose the path $P_1 : v_3 - v_1 - v_4$ and let v_1 be the center of the rotation. Rotate P_1 such that v_1 on v_3, v_3 on v_5 and v_4 on v_6, thus we have $P_2 : v_5 - v_3 - v_6$. Do the next rotation until v_1 on $v_5, v_{i-1}, ..., v_{4k-1}$. Then we have $2k$ of P_3-paths.

2. Choose the cycle $v_2 - v_4 - ... - v_{4k}$. Decompose this $2k$-cycle to k of P_3-paths.

3. Do the rotation again ($v_1 \rightarrow v_3 \rightarrow v_5 \rightarrow ...$), with choosing two vertices which close with the vertices that is rotated in step 1. If this rotation is not the last rotation, do the rotation again until v_1 on position of v_{4k-1}, such that we have $2k$ of P_3-path. If this rotation is the last rotation, first do the rotation in step 1 until v_1 on position of v_{2k-1} such that we have k of P_3-path. Then rotate $P' = v_{n-2} - v_2 - v_{n-1}$ with v_2 as a center of this rotation until v_2 on position of v_{2k} and we have $k P_3$-path.

From the Algorithm 1 above, we have that $P_3|C_n$. Then from Lemma 2.1 $P_3[K_m]|C_n[K_m]$ for $n \neq 4$, $n \equiv 0(\text{mod} 4)$.

Let $n \equiv 3(\text{mod} 4)$ dan $V(C_n) = \{v_1, ..., v_{4k+3}\}$, $k \in \mathbb{Z}^+$. Let $N(v_i) = V(C_n) \setminus \{v_{i-1}, v_{i+1}\}$. Decompose C_n with the following steps.

Algorithm 2

Choose the path $Q_1 = v_3 - v_1 - v_4$ with v_1 is the center of rotation. Rotate Q_1 such that v_1 on v_2 and we have $Q_2 = v_4 - v_2 - v_5$. Do the next rotation such that v_1 on $v_3, v_4, v_{i,}, ..., v_{4k+3}$. Do the rotation such that we have $kn P_3$-path.

From Algorithm 2, it's clearly that $P_3|C_n$. Thus from Lemma 2.1 $P_3[K_m]|C_n[K_m]$ for $n \equiv 3(\text{mod} 4)$.

See Figure 1 to see graph C_8 can be decomposed into 10 P_3-path.

Theorem 2.1. Suppose $n, m \in \mathbb{Z}^+$ and $m > 1$. For $n \equiv 3(\text{mod} 4)$, or $(n \equiv 0(\text{mod} 4)$ and m is even, Graph $C_n[K_m]$ have $P_3[K_m]$-magic decomposition.

Proof. Let $n \equiv 3(\text{mod} 4)$. From Lemma 2.1 we have for $n \equiv 3(\text{mod} 4)$, $P_3[K_m]|C_n[K_m]$. Let m be even. Do the next vertex labeling steps and edge labeling steps such in case 1 in Theorem 2.1.

Let $V_1, V_2, ..., V_n$ be the partitions of $V(C_n[K_m])$, where $V(C_n[K_m]) = V_1 \cup V_2 \cup ... \cup V_n = \{v_{1,1}, v_{1,2}, ..., v_{1,m}\} \cup \{v_{2,1}, v_{2,2}, ..., v_{2,m}\} \cup ... \cup \{v_{n,1}, v_{n,2}, ..., v_{n,m}\}$. Consider the set $A^* = [1, mn] =$
[1, (2k)n], k \in \mathbb{Z}\). for every \(i \in [1, n]\), \(A^*_i = \{a^i_j / 1 \leq j \leq m\}\), where

\[
a^i_j = \begin{cases}
 k(j - 1) + i, & \text{if } j \text{ is odd;} \\
 1 + nj - i, & \text{if } j \text{ is even.}
\end{cases}
\]

is a balance subset of \(A^*\).

Define a vertex labeling \(f_1\) of \(\overline{C_n[K_m]}\) which will label vertices of \(V_1, V_2, ..., V_n\) using elements of \(A^*_1, A^*_2, ..., A^*_n\) respectively.

Consider the set \(B^* = [mn + 1, mn + \frac{n(n-3)m^2}{2}]\). For every \(i \in [1, \frac{n(n-3)}{2}]\), \(B^*_i = \{b^i_j / 1 \leq j \leq m^2\}\), with \(b^i_j = \begin{cases}
 mn + \frac{n(n-3)}{2}(j - 1) + i, & \text{if } j \text{ is odd;} \\
 (mn + 1) + (\frac{n(n-3)}{2})j - i, & \text{if } j \text{ is even.}
\end{cases}\)

\(B^*_i = \{b^i_j / 1 \leq j \leq m^2\}\) is a balance subset of \(B^*\). Define an edge labeling \(f_2\) of \(\overline{C_n[K_m]}\) with label all edges in \(P_3[\overline{K_m}], i \in [1, \frac{n(n-3)}{2}]\) with the elements in \(B^*_i\).

Since for all \(i \in [1, \frac{n(n-3)}{4}]\), \(m(f_1 + f_2)(P_3[\overline{K_m}]) = 3m(f_1) + 2m(f_2) = 3m^2n + m + 2(m^2(2mn + 1 + \frac{n(n-3)m^2}{2})) = 3m^2n + 3m + m^2(2mn + 1 + \frac{n(n-3)m^2}{2})\) then \(\overline{C_n[K_m]}\) has \(P_3[\overline{K_m}]\)-magic decomposition.

Now let \(m\) is odd. Do the vertex labeling steps and edge labeling steps such in case 4 in Theorem 2.1.

(a) Let \(m = 3\). Consider the set \(A = [1, m(n + \frac{n(n-3)}{2})] = [1, 3(n + \frac{n(n-3)}{2})]\). For every \(i \in [1, (n + \frac{n(n-3)}{2})]\), \(A_i = \{a_i, b_i, c_i\}\) where

\[
a_i = 1 + i; \\
b_i = \begin{cases}
 (n + \frac{n(n-3)}{2}) + \frac{n(n-3)}{2} + i, & \text{for } i \in [1, \frac{n(n-3)}{2}]\]; \\
 (n + \frac{n(n-3)}{2}) - \frac{n+1}{2} + i, & \text{for } i \in [\lceil \frac{n+1}{2} \rceil, n + \frac{n(n-3)}{2}].
\end{cases}
\]

\[
c_i = \begin{cases}
 3(n + \frac{n(n-3)}{2}) + 1 - 2i, & \text{for } i \in [1, \frac{n+3}{2}]; \\
 3(n + \frac{n(n-3)}{2}) + 2\lceil \frac{n+3}{2} \rceil - 2i, & \text{for } i \in [\lceil \frac{n+3}{2} \rceil, n + \frac{n(n-3)}{2}].
\end{cases}
\]
Another H-super magic decompositions ...

$A_i = \{a_i, b_i, c_i\}$ is a balance subset of A. Consider the set $B = [3(n + \frac{n(n-3)}{2}) + 1, 3n + (\frac{n(n-3)}{2})m^2]$. For every $i \in [1, \frac{n(n-3)}{2}]$, $B_i = \{b_j/1 \leq j \leq m^2 - 3\}$, where

$$b_j = \begin{cases} 3(n + \frac{n(n-3)}{2}) + (n + \frac{n(n-3)}{2})(j - 1) + i, & \text{if } j \text{ is odd;} \\ 3(n + \frac{n(n-3)}{2}) + 1 + (n + \frac{n(n-3)}{2})j - i, & \text{if } j \text{ is even.} \end{cases}$$

$B_i = \{b_j/1 \leq j \leq m^2 - 3\}$ is a balance subset of B. Define a function $h_1 : V(C_n[K_m]) \rightarrow \{A_i, i \in [1, n]\} \subset A$ and label all vertices in every V_i with the elements of A_i. Define a function $h_2 : E(C_n[K_m]) \rightarrow \{A_i, i \in [n + 1, (n + \frac{n(n-3)}{2})]\} \cup B$ and label all edges in every $P_2[K_m], i \in [1, \frac{n(n-3)}{2}]$ with the elements of $A_{n+i} \cup B_i$.

(b) Let $m > 3$ and m be odd. Considering the set $A^* = [1, m(n + \frac{n(n-3)}{2})]$. Divide A^* to be two sets.

$$A = [1, 3(n + \frac{n(n-3)}{2})];$$

$$E = [3(n + \frac{n(n-3)}{2}) + 1, m(n + \frac{n(n-3)}{2})].$$

Follow the same way with (a), for $m = 3$, A is a $(n + \frac{n(n-3)}{2})$-balance multi set and for every $i \in [1, (n + \frac{n(n-3)}{2})]$, A_i is a balance subset of A. Consider the set $E = [3(n + \frac{n(n-3)}{2})+1, m(n + \frac{n(n-3)}{2})]$. For every $i \in [1, (n + \frac{n(n-3)}{2})]$,

$$E_i = \{e_j/1 \leq j \leq m - 3\},$$

where

$$e_j = \begin{cases} 3(n + \frac{n(n-3)}{2}) + (n + \frac{n(n-3)}{2})(j - 1) + i, & \text{if } j \text{ is odd;} \\ 3(n + \frac{n(n-3)}{2}) + 1 + (n + \frac{n(n-3)}{2})j - i, & \text{if } j \text{ is even.} \end{cases}$$

$E_i = \{e_j/1 \leq j \leq m - 3\}$ is a balance subset of E. Considering the set $M = [m(n + \frac{n(n-3)}{2}) + 1, m^2(n + \frac{n(n-3)}{2}) + mn]$. For every $i \in [1, \frac{n(n-3)}{2}]$, $M_i = \{m_j/1 \leq j \leq m^2 - m\}$, where

$$m_j = \begin{cases} m(n + \frac{n(n-3)}{2}) + (\frac{n(n-3)}{2})(j - 1) + i, & \text{if } j \text{ is odd;} \\ m(n + \frac{n(n-3)}{2}) + 1 + (\frac{n(n-3)}{2})j - i, & \text{if } j \text{ is even.} \end{cases}$$

$M_i = \{m_j/1 \leq j \leq m^2 - m\}$ is a balance subset of M.

Define a function $q_1 : V(C_n[K_m]) \rightarrow \{A_i = A_i \cup E_i, i \in [1, n]\} \subset A^*$ and label all vertices in every V_i with the elements of $\{A_i = A_i \cup E_i, i \in [1, n]\}$. Define a function $q_2 : E(C_n[K_m]) \rightarrow \{A_{n+i} = A_{n+i} \cup E_{n+i}\} \cup M$ and label all edges in every $P_2[K_m], i \in [1, \frac{n(n-3)}{2}]$ with the elements of $A_{n+i} \cup M_i$.

Since $\forall i \in [1, \frac{n(n-3)}{4}]$, $(q_1 + q_2)(P_3[K_m]) = 5 \sum A_i + 2 \sum M_i = 5(\sum A_i + \sum E_i) = 5((2 + 4n + 2n(n-3) + (\frac{n(n-3)}{2})) + (\frac{n(n-3)}{2})(3(n + \frac{n(n-3)}{2}) + 1 + m(n + \frac{n(n-3)}{2})) + 2(\frac{m^2-m}{2}) (m(n + \frac{n(n-3)}{2}) + 1 + m^2(n + \frac{n(n-3)}{2}) + mn))$ then $C_n[K_m]$ has $P_3[K_m]$-magic decomposition.

Now let $n \equiv 0(\text{mod}4)$ and m be even. From Lemma 3, we have for $n \equiv 0(\text{mod}4), P_3[K_m]\mid C_n[K_m]$. Do the vertex labeling steps and edge labeling steps such in case 1 in Theorem 2.1. Since for all $i \in [1, \frac{n(n-3)}{4}]$, $m(f_1 + f_2)(P_3[K_m]) = 3m(f_1) + 2m(f_2) = 3m^2n + m + 2(\frac{m^2}{2})(2mn + 1 + \frac{n(n-3)m^2}{2}) = 3m^2n + 3m + m^2(2mn + 1 + \frac{n(n-3)m^2}{2})$, then $C_n[K_m]$ have $P_3[K_m]$-magic decomposition.

Figure 2 give an example that graph $C_3[K_2]$ have $P_3[K_2]$- super magic decomposition with the constant value $m(f_1 + f_2) = 503$. □

76
Theorem 2.1. Since for all i

Now, let m

Algorithm 3
Choose the path $R_1: v_1 - v_3 - v_6 - v_4$ and let v_1 be the center of the rotation. Rotate R_1 such that v_1 on v_2, v_3 on v_4, v_6 on v_1 and v_4 on v_5, thus we have $R_2 = v_2 - v_4 - v_1 - v_5$. Do the next rotation such that v_1 on v_3, etc, and redo the process until $\left\lceil \frac{k-1}{2} \right\rceil$ rotations.

Figure 3 shows that graph C_9 can be decompose into 9 P_4-path.

Theorem 2.2. Let $n > 3$ and $m > 1$. For $n \equiv 3(mod12)$ or $n \equiv 6(mod12)$ or $n \equiv 9(mod12)$ or $n \equiv 0(mod12)$ and m is even, Graph $C_n[K_m]$ have $P_4[K_m]$-magic decomposition

Proof. Let $n \equiv 3(mod12)$. From Lemma 2.2, we have that for $n \equiv 3(mod12)$, $P_4[K_m] \mid C_n[K_m]$. Now, let m be even. Do the next vertex labeling steps and edge labeling steps such in case 1 in Theorem 2.1. Since for all $i \in [1, \frac{n(n-3)}{6}]$, $m(q_1 + q_2)(P_4[K_m]_i) = 4m(f_1) + 3m(f_2) = 4(m^2n + m) + 3(\frac{m^2}{2}2mn + 1 + \frac{n(n-3)m^2}{2})$ then $C_n[K_m]$ have $P_4[K_m]$-magic decomposition.

Let m be odd. Do the next vertex labeling steps and edge labeling steps such in case 4 in Theorem 2.1. Since for all $i \in [1, \frac{n(n-3)}{6}]$, $m(q_1 + q_2)(P_4[K_m]_i) = 7\sum A_i^* + 3\sum M_i = 7(2 + 4n + 2n(n-3) + (\frac{2n(n-3)}{4})) + (\frac{m^2}{3})(3(n + \frac{n(n-3)}{2}) + 1 + m(n + \frac{n(n-3)}{2} + 3m^2 - 3m)(m(n + \frac{n(n-3)}{2} + 1 + m^2(n + \frac{n(n-3)}{2} + mn), then $C_n[K_m]$ has $P_4[K_m]$-magic decomposition.
Figure 3. P_4-decomposition of C_9

Let $n \equiv 6 (mod 12)$. From Lemma 2.2, we have that $n \equiv 6 (mod 12)$, $P_4[K_m] \mid C_n[K_m]$. Now let m is even. Do the vertex labeling steps and edge labeling steps in case 1 Theorem 1. Because $\forall i \in [1, \frac{n(n-3)}{6}]$, $(f_1 + f_2)(P_4[K_{m_i}]) = 4 \sum Z_i + 3 \sum X_i$ then $C_n[K_m]$ have $P_4[K_m]$-magic decomposition. Let m is odd. Do the vertex labeling steps and edge labeling steps such in case 3 in Theorem 2.1.

Let $m = 3$. Consider the set $D = [1, m(n + \frac{n(n-3)}{2})] = [1, 3(n + \frac{n(n-3)}{2})]$. For every $i \in [1, (n + \frac{n(n-3)}{2})]$, $D_i = \{a_i, b_i, c_i\}$ where:

$$a_i = 1 + i;$$

$$b_i = \begin{cases} (n + \frac{n(n-3)}{2}) + \left\lfloor \frac{n(n-3)}{2} \right\rfloor + i, & \text{for } i \in [1, \left\lfloor \frac{n(n-3)}{2} \right\rfloor]; \\ (n + \frac{n(n-3)}{2}) - \left\lceil \frac{n(n-3)}{2} \right\rceil + i, & \text{for } i \in [\left\lceil \frac{n(n-3)}{2} \right\rceil, (n + \frac{n(n-3)}{2})]. \end{cases}$$

$$c_i = \begin{cases} 3(n + \frac{n(n-3)}{2}) + 1 - 2i, & \text{for } i \in [1, \left\lceil \frac{n(n-3)}{2} \right\rceil]; \\ 3(n + \frac{n(n-3)}{2}) + 2\left\lceil \frac{n(n-3)}{2} \right\rceil - 2i, & \text{for } i \in [\left\lceil \frac{n(n-3)}{2} \right\rceil, n + \frac{n(n-3)}{2}]. \end{cases}$$

$D_i = \{a_i, b_i, c_i\}$ is a balance subset of D.

Considering the set $E = [3(n + \frac{n(n-3)}{2}) + 1, 3n + (\frac{n(n-3)}{2})m^2]$. For every $i \in [1, \frac{n(n-3)}{2}]$, $E_i = \{b_j^i | 1 \leq j \leq m^2 - 3\}$, with $b_j^i = \begin{cases} 3(n + \frac{n(n-3)}{2}) + (n + \frac{n(n-3)}{2})(j - 1) + i, & \text{if } j \text{ is odd}; \\ 3(n + \frac{n(n-3)}{2}) + 1 + (n + \frac{n(n-3)}{2})j - i, & \text{if } j \text{ is even}. \end{cases}$

E_i is a balance subset of E.

Define a function $h_1 : V(C_n[K_m]) \to \{A_i, i \in [1, n]\} \subset A$ and label all vertices in every V_i with the elements of A_i. Define a function $h_2 : E(C_n[K_m]) \to \{A_i, i \in [n + 1, (n + \frac{n(n-3)}{2})]\} \cup B$ and label all edges in $P_4[K_{m_i}]$, $i \in [1, \frac{n(n-3)}{2}]$ with the elements of $A_{n+i} \cup B_i$.

Let $m > 3$ and m be odd. Consider the set $A^* = [1, m(n + \frac{n(n-3)}{2})]$. Divide A^* to be the two
sets A and E where

$$A = [1, 3(n + \frac{n(n-3)}{2})];$$

$$E = [3(n + \frac{n(n-3)}{2}) + 1, m(n + \frac{n(n-3)}{2})].$$

With the same way for $m = 3$, A is $(n + \frac{n(n-3)}{2})$-balance set and for every $i \in [1, (n + \frac{n(n-3)}{2})]$, A_i is a balance subset of A. Consider the set $E = [3(n + \frac{n(n-3)}{2}) + 1, m(n + \frac{n(n-3)}{2})]$. For every $i \in [1, (n + \frac{n(n-3)}{2})]$, $E_i = \{e_j^i/1 \leq j \leq m - 3\}$, where

$$e_j^i = \begin{cases} 3(n + \frac{n(n-3)}{2}) + (n + \frac{n(n-3)}{2})(j - 1) + i, & \text{if } j \text{ is odd;} \\ 3(n + \frac{n(n-3)}{2}) + 1 + (n + \frac{n(n-3)}{2})j - i, & \text{if } j \text{ is even.} \end{cases}$$

$E_i = \{e_j^i/1 \leq j \leq m - 3\}$ is a balance subset of E. Considering the set $M = [m(n + \frac{n(n-3)}{2}) + 1, m^2(n + \frac{n(n-3)}{2}) + mn]$. For every $i \in [1, (n + \frac{n(n-3)}{2})]$, $M_i = \{m_j^i/1 \leq j \leq m^2 - m\}$, where

$$m_j^i = \begin{cases} m(n + \frac{n(n-3)}{2}) + (n + \frac{n(n-3)}{2})(j - 1) + i, & \text{if } j \text{ is odd;} \\ m(n + \frac{n(n-3)}{2}) + 1 + (n + \frac{n(n-3)}{2})j - i, & \text{if } j \text{ is even.} \end{cases}$$

is a balance subset of M. Define a function $q_1 : V(C_n[K_m]) \to \{A_i^* = A_i \cup E_i, i \in [1, n]\} \subset A^*$ and label all vertices in every V_i with the elements of $\{A_i^*, i \in [1, n]\}$.

Define a function $q_2 : E(C_n[K_m]) \to \{A_{n+i}^* = A_{n+i} \cup E_{n+i}, i \in [1, n]\} \cup M$ and label all edges in every $P_2[K_m]$, $i \in [1, (n + \frac{n(n-3)}{2})]$, with the elements of $A_{n+i}^* \cup M$. Since for all $i \in [1, (n + \frac{n(n-3)}{2})]$, $(f_1 + g)(P_4[K_m]) = 7 \sum A_i^* + 3 \sum M_i$ then $C_n[K_m]$ has $P_4[K_m]$-magic decomposition.

Now let $n \equiv 9(mod 12)$. From Lemma 2.2 we have that for $n \equiv 9(mod 12)$, $P_4[K_m] | C_n[K_m]$. Now, let m be even. Do the vertex labeling steps and edge labeling steps such in case 1 in Theorem 2.1. Since for all $i \in [1, (n + \frac{n(n-3)}{2})]$, $(f_1 + g)(P_4[K_m]) = 4 \sum Z_i + 3 \sum X_i$ then $C_n[K_m]$ have $P_4[K_m]$-magic decomposition. Suppose m is odd. Do the vertex labeling steps and edge labeling steps such in case 2 of Theorem 2.1. Since for all $i \in [1, (n + \frac{n(n-3)}{2})]$, $(f_2 + h)(P_4[K_m]) = 3 \sum Y_i + 2 \sum P_i$ and $(f_3 + h)(P_4[K_m]) = 3(3 \sum W_i + 3 \sum X_i) + 2 \sum P_i$ then $C_n[K_m]$ has $P_4[K_m]$-magic decomposition.

Now let $n \equiv 0(mod 12)$ and m be even. Clearly from Lemma 2.2 that for $n \equiv 0(mod 12)$, $P_4[K_m] | C_n[K_m]$. Do the vertex labeling steps and edge labeling steps such in case 1 of Theorem 1. Because $\forall i \in [1, (n + \frac{n(n-3)}{2})]$, $(f_1 + g)(P_4[K_m]) = 4 \sum Z_i + 3 \sum X_i$ then $C_n[K_m]$ have $P_4[K_m]$-magic decomposition.

\begin{lemma}
\begin{proof}
Suppose C_n, where $n \equiv 1(mod 2)$ are P_{n-2}-decomposable graphs, then

$$\frac{|E(C_n)|}{3} = \frac{(2k+1)(2k-2)/2}{2k-2}, s \in Z^+$$

$$= k + \frac{1}{2} \notin Z^+. $$

(contradiction).

(\Rightarrow) Let $V(C_n) = \{v_1, ..., v_{2k}\}, k \in Z^+$ and $N(v_i) = V(C_n) \setminus \{v_{i-1}, v_{i+1}\}$. Do the next steps to decompose C_n. Choose the path $L_1 = v_1 - v_3 - v_n - v_4 - v_{n-1} - ...$ and let v_1 be the center of the rotation. Rotate $L1$ such that v_1 on v_2, v_3 on v_4, v_n on v_1 etc. Do the next rotation such that v_1 on v_3, etc, and continue the process until all edge are used up.

\end{proof}
\end{lemma}
Another H-super magic decompositions ...

Hendy, K.A. Sugeng, A.N.M. Salman and N. Ayunda

Figure 4. P_9-decomposition of C_{12}

For example, C_{12} in Figure 4 can be decomposed to be 6 P_9-path.

Theorem 2.3. Let $n > 3$ and $m > 1$. For $n \equiv 2 \pmod{4}$ or $(n \equiv 0 \pmod{4}$ and m is even), $C_n[K_m]$ have $P_{n-2}[K_m]$-magic decomposition.

Proof. Let $n \equiv 2 \pmod{4}$. From Lemma 2.2 we have that for $n \equiv 2 \pmod{4}$, $P_{n-2}[K_m]|C_n[K_m]$. Now, let m is even. Do the vertex labeling steps and edge labeling steps such in **case 1** of Theorem 2.1. Because of $\forall i \in [1, \frac{n}{2}]$, $(f_1 + f_2)(P_{n-2}[K_m]) = (n-2)m(f_1) + (n-3)m(f_2) = (n-2)(m^2 n + m) + (n-3)(\frac{m^2}{2}(2mn + 1 + \frac{n(n-3)m^2}{2})$. Thus $C_n[K_m]$ has $P_{n-2}[K_m]$-magic decomposition.

Acknowledgement

This research was supported by Research Grant “Program Hibah Penelitian Kerjasama Antar Perguruan Tinggi (Pekerti) Unipdu/UI 2017 ”, Ministry of Research, Technology and Higher Education No: 025/E3/2017.
References

