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Abstract
In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed
a graph transformation that transforms a graph G into a new graph µ(G), we now call the Myciel-
skian ofG, which has the same clique number asG and whose chromatic number equals χ(G)+1.
In this paper, we find the star chromatic number for the Mycielskian graph of complete graphs,
paths, cycles and complete bipartite graphs.
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1. Introduction

The notion of star chromatic number was introduced by Branko Grünbaum in 1973. A star
coloring [1, 4, 5] of a graph G is a proper vertex coloring in which every path on four vertices
uses at least three distinct colors. Equivalently, in a star coloring, the induced subgraphs formed
by the vertices of any two color classes has connected components that are star graphs. The star
chromatic number χs (G) of G is the least number of colors needed to star color G.

Guillaume Fertin et al.[5] gave the exact value of the star chromatic number of different families
of graphs such as trees, cycles, complete bipartite graphs, outerplanar graphs, and 2-dimensional
grids. They also investigated and gave bounds for the star chromatic number of other families
of graphs, such as planar graphs, hypercubes, d-dimensional grids (d ≥ 3), d-dimensional tori
(d ≥ 2), graphs with bounded treewidth, and cubic graphs.
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Albertson et al.[1] showed that it is NP-complete to determine whether χs (G) ≤ 3, even when
G is a graph that is both planar and bipartite. The problems of finding an optimal star colorings is
NP-hard and remain so even for bipartite graphs.

Preliminaries

We consider only finite, undirected, loopless graphs without multiple edges. The open neigh-
borhood of a vertex x in a graph G, denoted by NG (x), is the set of all vertices of G, which are
adjacent to x. Also, NG [x] = NG (x)∪{x} is called the closed neighborhood of x in the graph G.

In this paper, by G we mean a connected graph. From a graph G, by Mycielski’s construction
[3, 7, 8], we get the Mycielskian µ (G) of G with V (µ (G)) = V ∪ U ∪ {z}, where

V = V (G) = {x1, . . . , xn} , U = {y1, . . . , yn} , and
E (µ (G)) = E (G) ∪ {yix : x ∈ NG (xi) ∪ {z} , i = 1, . . . , n} .

A star coloring of a graph G is a proper coloring of G such that no path of length 3 in G is
bicolored. The star chromatic number of a graph G is the minimum number of colors which are
necessary to star color G. It is denoted by χs(G) for star coloring.

Additional graph theory terminology used in this paper can be found in [2, 6].
In order to prove our results, we shall use the following generalities and theorems by Guillaume

et al. [5].

Proposition 1.1. [5] For any graph G of order n and size m, χs(G) ≥ 2n+ 1−
√

∆

2
, where

∆ = 4n(n− 1)− 8m+ 1.

Proposition 1.2. [5] Let T be a tree and V1 and V2 be the bipartition of its set of vertices, then
there exists a star coloring of T c : V (T )→ {0, 1, 2, 3} such that if v ∈ V1 then c(v) ∈ {0, 2} and
if v ∈ V2 then c(v) ∈ {1, 3}.

Corollary 1.1. [5] If G is a planar graph with girth g ≥ 5, then χs(G) ≤ 32. If G is a planar
graph with girth g ≥ 7, then χs(G) ≤ 12.

Observation 1.1. [5] For any graph G and for any 1 ≤ α ≤ |V (G)|, let G1, . . . , Gp be the p con-
nected components obtained by removing α vertices fromG. In that case, χs ≤ maxi{χs(Gi)}+α.

Remark 1.1. [5] For any α ≥ 1, the above result is optimal for complete bipartitie graphs Kn,m.
Without loss of generality, suppose n ≤ m and let α = n. Remove the α = n vertices of partition
Vn. We then get m isolated vertices, which can be independently colored with a single color.
Then, give a unique color to the α = n vertices. We then get a star coloring with n+ 1 colors ; this
coloring can be shown to be optimal by theorem 1.2.

Observation 1.2. [5] For any graph G that can be partitioned into p stables S1, . . . , Sp, χs(G) ≤
1 + |V (G)| −maxi{|Si|}.
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Theorem 1.1. [5] If Cn is a cycle with n ≥ 3 vertices, then

χs(Cn) =

{
4 when n = 5

3 otherwise.

Theorem 1.2. [5] Let Kn,m be a complete bipartite graph with n+m vertices. Then χs(Kn,m) =
min{m,n}+ 1.

In the following section, we prove results concerning the star chromatic number of Mycielskian
graph of complete graphs, paths, cycles and complete bipartite graphs.

First, we define the vertex sets as follows,

V (Kn) = V (Pn) = V (Cn) = {ui : 1 ≤ i ≤ n}

V (µ (Kn)) = V (µ (Pn)) = V (µ (Cn)) = {ui : 1 ≤ i ≤ n} ∪ {vj : 1 ≤ j ≤ n} ∪ {z}

V (Km,n) = {ui : 1 ≤ i ≤ m} ∪ {vj : 1 ≤ j ≤ n}

V (µ (Km,n)) = {ui : 1 ≤ i ≤ m} ∪ {vj : 1 ≤ j ≤ n} ∪ {u′i : 1 ≤ i ≤ m}
∪
{
v′j : 1 ≤ j ≤ n

}
∪ {z}

2. Results

Star Coloring of Mycielskian of Complete Graphs

Theorem 2.1. For n ≥ 2, χs(µ(Kn)) = n+ 2.

Proof. Let σ be a mapping from V (µ (Kn)) defined as follows: σ (ui) = i : 1 ≤ i ≤ n, σ(u′i) =
n + 1 : 1 ≤ i ≤ n and σ(z) = n + 2. Thus χs (µ (Kn)) ≤ n + 2. First note that at least n colors
are needed to assign for vertices ui : 1 ≤ i ≤ n, since the subgraph induced by these n vertices is
isomorphic to Kn. However, n colors are not enough to star color µ (Kn), because if only n colors
are allowed then σ (u′i) = i : 1 ≤ i ≤ n and this case will not satisfy a proper star coloring. Thus
χs (µ (Kn)) ≥ n+ 1.

Now suppose that n + 1 colors are allowed. If σ (u′i) = n + 1 : 1 ≤ i ≤ n. Then, z has
received any one color from ui = i : 1 ≤ i ≤ n and z is adjacent to u′i for every 1 ≤ i ≤ n. Thus,
n+ 1 colors do not suffice to star color µ (Kn) and consequently χs (µ (Kn)) ≥ n+ 2. Therefore,
χs (µ (Kn)) = n+ 2.

Star Coloring of Mycielskian of Paths

Theorem 2.2. For any positive integer n > 3, χs(µ(Pn)) = 5.
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Proof. Let σ be a mapping from V (µ(Pn)) defined as follows: σ (ui) = i mod 3; σ(u′i) = 3 : 1 ≤
i ≤ n and σ(z) = 4. Thus, χs (µ (Pn)) ≤ 5. Color the vertices of ui : 1 ≤ i ≤ n alternatively
by colors 1,2 and 0. Thus for any vertex ui, its two neighbours are assigned distinct colors and
consequently this is a valid star coloring. First, note that the cycle of length 5, C5 is a subgraph of
µ(Pn). Thus, χs(µ(Pn)) ≥ 4, by Theorem 1.1. Suppose, only 4 colors are used in µ (Pn).

In this case, ui : 1 ≤ i ≤ n and u′i : 1 ≤ i ≤ n can be assigned colors 0, 1, 2 and 3.
If σ (ui) = i mod 4 and the vertices u′i : 1 ≤ i ≤ n has received the colors 1, 0, 3 and 2
alternatively, none of these colors can be given to z. If σ(ui) = i + 1 mod 4 and the vertices
u′i : 1 ≤ i ≤ n has received the colors 0, 2, 3 and 1 alternatively, none of these colors can be given
to z. If σ (ui) = i mod 3 and σ (u′i) = 4, 1 ≤ i ≤ n, none of these colors can be given to z.
Therefore µ (Pn) must be colored with at least 5 different colors. Thus, χs(µ(Pn)) ≥ 5 and hence,
χs(µ(Pn)) = 5.

Star Coloring of Mycielskian of Cycles

Theorem 2.3. For any positive integer n,

χs(µ(Cn)) =

{
5 if n = 3k and n = 3k + 2

6 if n = 3k + 1

where k is a positive integer.

Proof. Let σ be a mapping from V (µ(Cn)) defined as follows:
Case 1. For n = 3k, σ (ui) = i mod 3, 1 ≤ i ≤ n; σ (u′i) = 3, 1 ≤ i ≤ n and σ (z) = 4. Thus,
χs(µ(Cn)) ≤ 5. Clearly, at least 3 colors are needed to assign to vertices ui : 1 ≤ i ≤ n. First,
color alternatively the vertices around the cycle by colors 1,2 and 0. Thus, for any vertex ui, its two
neighbors are assigned distinct colors and consequently this is a valid star coloring. However, 3
colors are not enough to star color µ (Cn), because if only 3 colors are allowed then for 1 ≤ i ≤ n,
σ (u′i) = i mod 3 and this case will not satisfy a proper star coloring. Thus χs (µ (Cn)) ≥ 4.
From Theorem 2.2, it follows that χs(µ(Cn)) ≥ 5. Hence, χs(µ(Cn)) = 5.
Case 2. For n = 3k + 1, σ (ui) = i mod 3, 1 ≤ i ≤ n− 1; σ (un) = 2; σ (z) = 5 and

σ(u′i) =

{
3 if i ≡ 0 mod 3

4 otherwise.

Color the vertices ui : 1 ≤ i ≤ n − 1 of µ (Cn) consecutively, by repeating the sequence of
colors 1, 2 and 0. There remain one uncolored vertex, to which assign color 2. Note that the cycle
of length 5, C5 is a subgraph of µ(Cn). It can be easily checked that χs(µ(Cn)) = 4 and thus
χs(µ(Cn)) ≥ 4. However, 4 colors are not enough to star color µ (Cn), because if only 4 colors
are allowed, then σ (u′i) = σ (ui), i : 1 ≤ i ≤ n which results in bicolored path

{
u′nun−1unu

′
n−1
}

and a proper star coloring is not satisfied. Thus χs (µ (Cn)) ≥ 5.
Now suppose that 5 colors are allowed. If

σ(u′i) =

{
3 if i ≡ 0 mod 3

4 otherwise.
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Then σ (z) has received any one color from ui = i : 1 ≤ i ≤ n. Thus, 5 colors do not suffice
to star color µ (Cn) and consequently χs (µ (Cn)) ≥ 6. Therefore χs (µ (Cn)) = 6.
Case 3. n ≡ 2 mod 3
Case 3.1. n = 5 or n = 8

Star coloring of µ(C5) = 6 and µ(C8) = 5 is given in Figure 1 a) and b) respectively.

Figure 1. a) µ(C5); b) µ(C8) with their star coloring.

Case 3.2. n ≥ 11

Let n = 8 + 3t, t ≥ 1. For 1 ≤ i ≤ 8, color the vertices vi as in Figure 1 b). Then, for
9 ≤ i ≤ n the remaining vertices of µ(Cn) are colored in the following way,

σ(ui) =


1 if i ≡ 0 mod 3

2 if i ≡ 1 mod 3

3 if i ≡ 2 mod 3

and

σ(u′i) =

{
3 if σ(ui) = 3

4 otherwise.

and σ(z) = 5. Similarly as it was in Case 1, it can be easily checked that σ is proper star 5-coloring.
Hence, χs(µ(Cn)) = 5.

Star Coloring of Mycielskian of Complete Bipartite Graphs

Theorem 2.4. Let n and m be positive integers, then

χs(µ(Km,n)) = 2(min {m,n}+ 1).

Proof. Let m ≤ n. Let σ be a mapping from V (µ(Km,n)) defined as follows. σ(ui) = i, 1 ≤ i ≤
m; σ(vi) = m + 1, 1 ≤ i ≤ n; σ(v′i) = m + 1, 1 ≤ i ≤ n; σ(u′i) = m + 1 + i, 1 ≤ i ≤ m and
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σ(z) = 2m+ 2. Thus χs(µ(Km,n)) ≤= 2m+ 2. Now prove that χs(µ(Km,n)) ≥ 2m+ 2. Let Sm

and S ′m (resp. Sn and S ′n) be the set of colors used to color the vertices of Um and U ′m (resp. Vn
and V ′n).
Case 1. Consider the vertices Um (resp. Vn). By Theorem 1.2, χs(Km,n) ≥ m + 1. Then
χs (µ (Km,n)) ≥ m+ 1.
Case 2. Now consider the vertices Um and U ′m (resp. Vn and V ′n). Any coloring with 2m colors will
give at least one bicolored cycle of length 4. In that case, there exists at least 2 vertices um and u′m
in Um and U ′m (resp. vn and v′n in Vn and V ′n). Since there exists a path of length 4 going through the
vertices {u′mvn umv′n} and this path is bicolored with color 1 and 2. Thus, χs (µ (Km,n)) ≥ 2m+1.
Case 3. Let V (µ (Km,n)) = Um ∪ U ′m ∪ Vn ∪ V ′n ∪ z. The vertex z has received any one color
from Um. In that case, there exists a path of length 4 going through the vertices {umv′nzv′n} and
this path is bicolored with color 1 and 2. Thus, no coloring that uses 2m + 1 colors can be a star
coloring, and χs (µ (Km,n)) ≥ 2m+ 2.

Therefore χs(µ(Km,n)) = 2m+ 2.
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[7] J. Miškuf, R. Škrekovski, and M. Tancer, Backbone Colorings and generalized Mycielski
Graphs, SIAM J. Discrete Math. 23(2) (2009), 1063–1070.

[8] J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3 (1955), 161–162.

87


