

Further results on locating chromatic number for amalgamation of stars linking by one path

Asmiati^a, L. Yulianti^b, C. Ike Tri Widyastuti^c

^aDepartment of Mathematics, Lampung University, Bandar Lampung, Indonesia ^bDepartment of Mathematics, Andalas University, Limau Manis Padang, Indonesia ^cFransiskus Senior High School, Bandar Lampung, Indonesia

asmiati.1976@fmipa.unila.ac.id, lyra@sci.unand.ac.id, ike_widya76@yahoo.com

Abstract

Let G = (V, E) be a connected graph. Let c be a proper coloring using k colors, namely $1, 2, \dots, k$. Let $\Pi = \{S_1, S_2, \dots, S_k\}$ be a partition of V(G) induced by c and let S_i be the color class that receives the color i. The color code, $c_{\Pi}(v) = (d(v, S_1), d(v, S_2), \dots, d(v, S_k))$, where $d(v, S_i) = \min\{d(v, x) | x \in S_i\}$ for $i \in [1, k]$. If all vertices in V(G) have different color codes, then c is called as the *locating-chromatic* k-coloring of G. Minimum k such that G has the locating-chromatic k-coloring is called the locating-chromatic number, denoted by $\chi_L(G)$. In this paper, we discuss the locating-chromatic number for n certain amalgamation of stars linking a path, denoted by $nS_{k,m}$, for $n \ge 1, m \ge 2, k \ge 3$, and k > m.

Keywords: locating chromatic number, amalgamation of stars Mathematics Subject Classification : 05C12, 05C15. DOI: 10.19184/ijc.2018.2.1.6

1. Introduction

The locating chromatic number is a topic in graph theory, derived from the vertex-coloring and partition dimension of a graph [11]. Many paper discussed about the locating chromatic number since Chartrand et al. [9] introduced the concept in 2002.

All graphs considered are finite, undirected and simple. Let G = (V, E) be a connected graph. Let c be a proper coloring using k colors, namely $1, 2, \dots, k$. Let $\Pi = \{S_1, S_2, \dots, S_k\}$ be a partition of V(G) induced by c and let S_i be the color class that receives the color i. The

Received: 01 Feb 2018, Revised: 01 Jun 2018, Accepted: 08 Jun 2018.

color code, $c_{\Pi}(v) = (d(v, S_1), d(v, S_2), \dots, d(v, S_k))$, where $d(v, S_i) = \min\{d(v, x) | x \in S_i\}$ for $i \in [1, k]$. If all vertices in V(G) have different color codes, then c is called as the *locating-chromatic k-coloring* of G. Minimum k such that G has the locating-chromatic k-coloring is called the locating-chromatic number, denoted by $\chi_L(G)$.

Theorem 1.1. [10] Let G be a simple connected graph and c be a locating coloring of G. If $v, w \in V(G)$ and $v \neq w$ such that d(v, x) = d(w, x) for all $x \in V(G) - \{v, w\}$, then $c(v) \neq c(w)$. In particular, if v and w are non adjacent vertices of G such that neighborhood of v is equal to neighborhood of w, then $c(v) \neq c(w)$.

Corollary 1.1. [10] If G is a simple connected graph containing a vertex that is adjacent to k leaves of G, then $\chi_L(G) \ge k + 1$.

Chartrand et al. [9][10] obtained the locating chromatic number of some classes of graphs such that: paths, stars, double stars, caterpillars, complete graphs, bipartite graphs, and the characterization of graphs having locating chromatic number n, (n - 1), or (n - 2). Next, Asmiati et al. investigated locating chromatic number for special kind of trees, namely: amalgamation of stars [1], [4], firecracker graphs [2], banana trees [5]. Moreover, Baskoro at al. [8] determined the locating chromatic number for corona product of some graphs. Beside that, Asmiati et al. [3] characterized graphs containing cycle having locating chromatic number tree and Baskoro et al. [7] characterized all trees having locating chromatic number three.

Let S_{m+2} be a star with (m+2) vertices. The amalgamation of stars, denoted by $S_{k,m}$, where $k, m \ge 2$, is obtained from (k-1) stars S_{m+2} , by identifying one leaf of every stars S_{m+2} . The identified vertex is denoted as the center of $S_{k,m}$. Graph $nS_{k,m}$ is obtained from n copies $S_{k,m}$ and every center of them, denoted by x_i , for i = 1, 2, ..., n is linked by one path, and (n-1) new vertices denoted $y_i, i = 1, 2, ..., n-1$ are the subdivision vertices in $x_i x_{i+1}, i = 1, 2, ..., n-1$. Next, the vertices of distance 1 from the center x_i are defined as the intermediate vertices, denoted by $l_j^i, i = 1, 2, ..., n, j = 1, 2, ..., k-1$ and the *t*-th leaf of the intermediate vertices l_j^i are denoted by $l_{it}^i(t = 1, 2, ..., m)$.

In [6], Assimilation et al. determined the locating chromatic number of $nS_{k,m}$ for $k \leq m$, where $k \geq 3$ and $m \geq 2$, as follows.

$$\chi_L(nS_{k,m}) = \begin{cases} m+1, & 1 \le n \le \lfloor \frac{m}{k-1} \rfloor; \\ m+2, & \text{otherwise.} \end{cases}$$

In this paper we will discuss the locating chromatic number of $nS_{k,m}$ for k > m, where $k \ge 3$ and $m \ge 2$.

2. Main Results

In this section, we will discuss about the locating chromatic number of $nS_{k,m}$ for $n \ge 1$ and $k > m, k \ge 3, m \ge 2$.

Lemma 2.1. Let c be a coloring on $nS_{k,m}$ using (k-a) colors, where $k > m, k \ge 3, m \ge 2, a \ge 0$, a = k - m - 1. Coloring c is a locating coloring if and only if $c(l_j^i) = c(l_n^s), j \ne n$ and $i \ne s$ such that $\{c(l_{jt}^i) \mid t = 1, 2, 3, ..., m\}$ and $\{c(l_{nt}^s) \mid t = 1, 2, 3, ..., m\}$ are two different sets.

Proof. Consider $P = \{c(l_{jt}^i) \mid t=1,2,3,\ldots,m\}$ and $Q = \{c(l_{nt}^s) \mid t=1,2,3,\ldots,m\}$. Let c be a locating coloring of $nS_{k,m}$, $k > m, k \ge 3, m \ge 2, a \ge 0$, dan $c(l_j^i) = c(l_n^s)$, for some $j \ne n$, and $i \ne s$. Suppose that P = Q. Since $d(l_j^i, u) = d(l_n^s, u)$ for each $u \in V \setminus \{\{l_{jt}^i\} \cup \{l_{nk}^s\}\}$, then the color codes of l_j^i and l_n^s are the same. So, c is not a locating coloring, a contrary. As the result, $P \ne Q$.

Let Π be a partition of V(G) with $|\Pi| \ge m$. Consider $c(l_j^i) = c(l_n^s), j \ne n$, dan $i \ne s$. Since $P \ne Q$, then there are two colors, namely x and y such that $(x \in P, x \notin Q)$ or $(y \in P, y \notin Q)$. Next, we will show that every $v \in V(nS_{k,m})$ have different color codes.

- It is clear that $c_{\Pi}(l_j^i) \neq c_{\Pi}(l_n^s)$, since their color codes are different in the x-ordinat or y-ordinat.
- If $c(l_{jt}^i) = c(l_{nt}^s)$, for each $l_j^i \neq l_n^s$, then we divide two cases to show that $c_{\Pi}(l_{jt}^i) \neq c_{\Pi}(l_{nt}^s)$ Case 1: If $c(l_{jt}^i) = c(l_{nt}^s)$, then based on the previous proof $P \neq Q$. So, $c_{\Pi}(l_{jt}^i) \neq c_{\Pi}(l_{nt}^s)$. Case 2: Consider $c(l_j^i) = p_1$ and $c(l_n^s) = p_2$, where $p_1 \neq p_2$. Then $c_{\Pi}(l_{jt}^i) \neq c_{\Pi}(l_{nt}^s)$ because their color codes are different at least in the p_1 -ordinat and p_2 -ordinat.
- If $c(x_i) = c(l_{jt}^i)$, then the color code of $c_{\Pi}(x_i)$ contains at least two components with value 1, whereas in $c_{\Pi}(l_{jt}^i)$ contains exactly one component with value 1. So, $c_{\Pi}(x_i) \neq c_{\Pi}(l_{jt}^i)$.
- If c (y_i) = c(lⁱ_{jt}), then the color code of c_Π (y_i) contains at least two components with values

 whereas in c_Π(lⁱ_{jt}) contains exactly one component with value 1. So, c_Π (y_i) ≠ c_Π(lⁱ_{jt}).

From all cases, we can see that all vertices in $nS_{k,m}$ have different color codes, so c is a locating coloring. \Box

Lemma 2.2. Let
$$n \ge 1$$
, $k > m$, $k \ge 3$, $m \ge 2$, $a \ge 0$, and $a = k - m - 1$. If c is a locating coloring of $nS_{k,m}$ using $k - a$ colors and $H(a) = \left\lfloor \frac{(k - a - 1)\binom{k-a-1}{m}}{k-1} \right\rfloor$, then $n \le H(a)$.

Proof. Let c be a (k - a)-locating coloring of $nS_{k,m}$. For some j, consider $c(l_j^i)$ as the color of l_j^i , then the color combination of $\{l_{jt}^i \mid t = 1, 2, 3, ..., m\}$ is $\binom{k-a-1}{m}$. Since one color has been used for the central vertex x, then there are (k - a - 1) colors left to be assigned to l_j^i , for each i = 1, 2, ..., n and j = 1, 2, 3, ..., k - 1. By Lemma 2.1, the maximum number for n is $\left|\frac{(k-a-1)\binom{k-a-1}{m}}{k-1}\right| = H(a), a \ge 0$. \Box

Theorem 2.1. Let $nS_{k,m}$ be some certain amalgamation of stars for $a \ge 0$, k > m, $k \ge 3$, $m \ge 2$, a = k - m - 1. Then

$$\chi_L(nS_{k,m}) = \begin{cases} k-a, & 1 \le n \le H(a), \\ k-a+1, & otherwise. \end{cases}$$

Proof. First, we determine the lower bound of $\chi_L(nS_{k,m})$ for $1 \le n \le H(a) = \left\lfloor \frac{(k-a-1)\binom{k-a-1}{m}}{k-1} \right\rfloor$. Since every vertex l_j^i for i = 1, 2, 3, ..., n and j = 1, 2, 3, ..., k-1 are adjacent to m = k-a-1 leaves, then by Corollary 1.1, we have $\chi_L(nS_{k,m}) \ge k-a$.

To determine the upper bound of $\chi_L(nS_{k,m})$ for $1 \le n \le H(a) = \left\lfloor \frac{(k-a-1)\binom{k-a-1}{m}}{k-1} \right\rfloor$, let c be a coloring of $V(nS_{k,m})$ using (k-a) colors. We assign the coloring as follows.

- - $c(x_i) = 1$, for i = 1, 2, 3, ..., n.
 - $c(y_i) = 2$, for odd *i* and 3 for even i = 1, 2, 3, ..., n.
 - Color of l_i^j for each i = 1, 2, ..., n and j = 1, 2, ..., (k-1) given color 2, 3, ..., (k-a), respectively.
 - $\{c(l_{jt}^i)\} = \{1, 2, 3, \dots, k-a\} \setminus \{c(l_i^j)\}$ for $t = 1, 2, 3, \dots, m$.

Next, we will show that all vertices in $V(nS_{k,m})$ have different color codes. Consider $u, v \in V(nS_{k,m})$ and c(u) = c(v). Then we have the following cases.

- If $u = x_i$, $v = x_k$ for some i, k and $i \neq k$, then $c_{\Pi}(u) \neq c_{\Pi}(v)$ because $c(l_j^i) \neq c(l_j^k)$ for each i = 1, 2, ..., (k-1).
- If $u = x_i$, $v = l_{jt}^h$ for some i, h, j, t, then in $c_{\Pi}(u)$ does not have component value four, whereas in $c_{\Pi}(v)$, exactly one component has value 4. So, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = y_i$, $v = l_j^i$, for some i, j, then in $c_{\Pi}(u)$ exactly two components have value 1, whereas in c(v), at least three components have value 1. So, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = y_i$, $v = l_j^k$, for some i, k, j and $i \neq k$, then in $c_{\Pi}(u)$ exactly two components have value 1, whereas in c(v), at least three components have value 1. So, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = y_i$, $v = l_{jt}^i$ for some i, j, t, then in $c_{\Pi}(u)$, exactly two components have value 1, whereas in c(v), exactly one component has value 1. As a result, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = y_i$, $v = l_{jt}^k$ for some i, k, j, t and $i \neq k$, then in $c_{\Pi}(u)$ at least two components have value 1, whereas in c(v), exactly one component has value 1. So, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = l_j^i$, $v = l_{jt}^i$ for some i, j, t, then in $c_{\Pi}(u)$ at least two components have value 1, whereas in c(v), exactly one component has value 1. As a result, $c_{\Pi}(u) \neq c_{\Pi}(v)$
- If u = lⁱ_j, v = l^k_{ht} for some i, j, k, h, t and i ≠ k, j ≠ h, then in c_Π(u), at least two components have value 1, whereas in c(v), exactly one component has value 1. So, c_Π(u) ≠ c_Π(v)
- if $u = l_{jt}^i$, $v = l_{ht}^i$ for some $i, j, h, t, j \neq h$. Since $\{c(l_{jt}^i)\} \neq \{c(l_{ht}^i)\}$, then $c_{\Pi}(u) \neq c_{\Pi}(v)$.

• If $u = l_{jt}^i$, $v = l_{jt}^k$ for some $i, j, k, t, i \neq k$. Since $c(l_j^i) \neq c(l_j^k)$, then $c_{\Pi}(u) \neq c_{\Pi}(v)$.

Since all vertices have different color codes, then c is a locating coloring on $nS_{k,m}$. Thus, $\chi_L(nS_{k,m}) \le k-a$ for $n \le H(a)$.

Next, we discuss the locating chromatic number of $nS_{k,m}$ for n > H(a).

By Corollary 1.1, we have the trivial lower bound, $\chi_L(S_{k,m}) \ge k - a$ for > H(a). Suppose that c is a locating coloring using (k - a) colors on $nS_{k,m}$ for k > m, $k \ge 3$, $m \ge 2$, and n > H(a). Since n > H(a), then there are $i, j, k, t, i \ne k$ and $\{c(l_j^i), c(l_{jt}^i)\} = \{c(l_j^k), c(l_{jt}^k)\} = \{1, 2, 3, \ldots, k - a\}$ such that $c_{\Pi}(l_j^i) = c_{\Pi}(l_j^k)$ for some $j = 1, 2, 3, \ldots, k - 1, t = 1, 2, 3, \ldots, m$, a contrary. Thus, $\chi_L(S_{k,m}) \ge k - a + 1$ for n > H(a).

Let c be a coloring on $nS_{k,m}$ using (k - a + 1) colors. We assign the coloring as follows.

- $c(x_i) = 1$, for i = 1, 2, 3, ..., n.
- $c(y_i) = 2$, for odd *i* and 3 for even i = 1, 2, 3, ..., n.
- For $j = 1, 2, 3, ..., (k-1), c(l_i^j) = 2$, for odd i and 3 for even i = 1, 2, 3, ..., n.
- If $A = \{1, 2, \dots, k a + 1\}$, define:

$$\{c(l_{jt}^i)|t=1,2,\ldots,m)\} = \begin{cases} A \setminus \{1,k-a\} & \text{if } i=1, \\ A \setminus \{k-a+1\} & \text{otherwise.} \end{cases}$$

The maximum number of colored p is $\binom{k-a-1}{m}$ for any p. We can do that because n > H(a). So, $c\left(l_{j}^{i}\right) = c(l_{n}^{s}), j \neq n$, dan $i \neq s$. Thus, we can arrange such that $\left\{c(l_{jt}^{i}) \mid t = 1, 2, 3, \ldots, m\right\} \neq \{c(l_{nt}^{s}) \mid t = 1, 2, 3, \ldots, m\}$. As the result, by Lemma 2.1, c is a locating coloring. Thus, $\chi_{L}(nS_{k,m}) \leq k - a + 1$ for n > H(a). As the conclusion, we obtain that $\chi_{L}(nS_{k,m}) = k - a + 1$. \Box For an illustration, we give the locating-chromatic coloring of $nS_{5,3}$ for $1 \leq n \leq 4$ in Figure 1 and $nS_{5,3}$ for n > 4 in Figure 2.

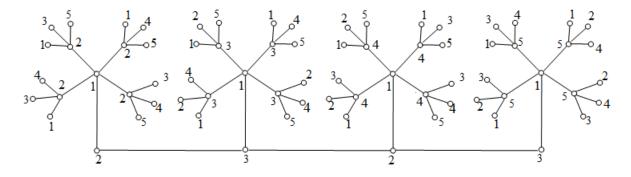


Figure 1. A minimum locating coloring of $4S_{5,3}$

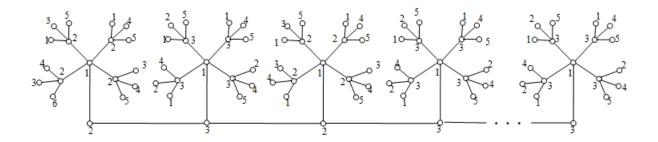


Figure 2. A minimum locating coloring of $nS_{5,3}$ for n > 4, a = 0

References

- [1] Asmiati, H. Assiyatun, E.T. Baskoro, Locating-Chromatic Number of Amalgamation of Stars, *ITB J.Sci.* **43A** (2011), 1 8.
- [2] Asmiati, H. Assiyatun, E.T. Baskoro, D. Suprijanto, R. Simanjuntak, S. Uttunggadewa, Locating-Chromatic Number of Firecracker Graphs, *Far East Journal of Mathematical Sciences* 63(1) (2012), 11 – 23.
- [3] Asmiati, E.T. Baskoro, Characterizing of Graphs Containing Cycle with Locating-Chromatic Number Three, AIP Conf. Proc. 1450 (2012), 351 – 357.
- [4] Asmiati, Locating-Chromatic Number of Non Homogeneous Amalgamation of Stars, Far East Journal of Mathematical Sciences 93(1) (2014), 89 – 96.
- [5] Asmiati, Locating-chromatic number of banana tree, *International Mathematical Forum*, 12(1) (2017), 39 – 45.
- [6] Asmiati, Bilangan kromatik lokasi n amalgamasi bintang yang dihubungkan oleh suatu lintasan, *Jurnal Matematika Integratif* **13(2)** (2017), 115 121.
- [7] E.T. Baskoro, Asmiati, Characterizing all Trees with Locating-Chromatic Number 3, *Electronic Journal of Graph Theory and Applications* **1**(**2**) (2013), 109 117.

- [8] E.T. Baskoro, I. A. Purwasih, The Locating-Chromatic Number for Corona Product of Graphs, *Southeast-Asian J. of Sciences* 1(1) (2012), 126 136.
- [9] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zang, The Locating-Chromatic Number of a Graph, *Bulls. Inst. Combin. Appl.* **36** (2002), 89 101.
- [10] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zang, Graph of Order n with Locating-Chromatic Number n 1, *Discrete Mathematics* **269** (2003), 65 79.
- [11] G. Chartrand, P. Zhang, E. Salehi, On the Partition Dimension of Graph, *Congr. Numer.* 130(1998), 157 – 168.