Further results on locating chromatic number for amalgamation of stars linking by one path

Asmiatia, L. Yuliantib, C. Ike Tri Widyastutic

aDepartment of Mathematics, Lampung University, Bandar Lampung, Indonesia
bDepartment of Mathematics, Andalas University, Limau Manis Padang, Indonesia
cFransiskus Senior High School, Bandar Lampung, Indonesia

asmiati.1976@fmipa.unila.ac.id, lyra@sci.unand.ac.id, ike_widya76@yahoo.com

Abstract

Let $G = (V,E)$ be a connected graph. Let c be a proper coloring using k colors, namely $1, 2, \cdots, k$. Let $\Pi = \{S_1, S_2, \cdots, S_k\}$ be a partition of $V(G)$ induced by c and let S_i be the color class that receives the color i. The color code, $c_{\Pi}(v) = (d(v, S_1), d(v, S_2), \cdots, d(v, S_k))$, where $d(v, S_i) = \min\{d(v, x) | x \in S_i\}$ for $i \in [1, k]$. If all vertices in $V(G)$ have different color codes, then c is called as the locating-chromatic k-coloring of G. Minimum k such that G has the locating-chromatic k-coloring is called the locating-chromatic number, denoted by $\chi_L(G)$. In this paper, we discuss the locating-chromatic number for n certain amalgamation of stars linking a path, denoted by nS_k,m, for $n \geq 1$, $m \geq 2$, $k \geq 3$, and $k > m$.

Keywords: locating chromatic number, amalgamation of stars
Mathematics Subject Classification : 05C12, 05C15.
DOI: 10.19184/ijc.2018.2.1.6

1. Introduction

The locating chromatic number is a topic in graph theory, derived from the vertex-coloring and partition dimension of a graph [11]. Many paper discussed about the locating chromatic number since Chartrand et al. [9] introduced the concept in 2002.

All graphs considered are finite, undirected and simple. Let $G = (V,E)$ be a connected graph. Let c be a proper coloring using k colors, namely $1, 2, \cdots, k$. Let $\Pi = \{S_1, S_2, \cdots, S_k\}$ be a partition of $V(G)$ induced by c and let S_i be the color class that receives the color i. The
Further Results on Locating Chromatic Number ...

Asmiati, L. Yulianti and C. I. T. Widyastuti

color code, \(c_\Pi(v) = (d(v, S_1), d(v, S_2), \ldots, d(v, S_k)) \), where \(d(v, S_i) = \min\{d(v, x)|x \in S_i\} \) for \(i \in [1, k] \). If all vertices in \(V(G) \) have different color codes, then \(c \) is called as the locating-chromatic \(k \)-coloring of \(G \). Minimum \(k \) such that \(G \) has the locating-chromatic \(k \)-coloring is called the locating-chromatic number, denoted by \(\chi_L(G) \).

Theorem 1.1. [10] Let \(G \) be a simple connected graph and \(c \) be a locating coloring of \(G \). If \(v, w \in V(G) \) and \(v \neq w \) such that \(d(v, x) = d(w, x) \) for all \(x \in V(G) - \{v, w\} \), then \(c(v) \neq c(w) \). In particular, if \(v \) and \(w \) are non adjacent vertices of \(G \) such that neighborhood of \(v \) is equal to neighborhood of \(w \), then \(c(v) \neq c(w) \).

Corollary 1.1. [10] If \(G \) is a simple connected graph containing a vertex that is adjacent to \(k \) leaves of \(G \), then \(\chi_L(G) \geq k + 1 \).

Chartrand et al. [9][10] obtained the locating chromatic number of some classes of graphs such that: paths, stars, double stars, caterpillars, complete graphs, bipartite graphs, and the characterization of graphs having locating chromatic number \(n \), \((n-1)\), or \((n-2)\). Next, Asmiati et al. investigated locating chromatic number for special kind of trees, namely: amalgamation of stars [1], [4], firecracker graphs [2], banana trees [5]. Moreover, Baskoro at al. [8] determined the locating chromatic number for corona product of some graphs. Beside that, Asmiati et al. [3] characterized graphs containing cycle having locating chromatic number tree and Baskoro et al. [7] characterized all trees having locating chromatic number three.

Let \(S_{m+2} \) be a star with \((m+2)\) vertices. The amalgamation of stars, denoted by \(S_{k,m} \), where \(k \geq 2 \), is obtained from \((k-1)\) stars \(S_{m+2} \), by identifying one leaf of every stars \(S_{m+2} \). The identified vertex is denoted as the center of \(S_{k,m} \). Graph \(nS_{k,m} \) is obtained from \(n \) copies \(S_{k,m} \) and every center of them, denoted by \(x_i \), for \(i = 1, 2, \ldots, n \) is linked by one path, and \((n-1)\) new vertices denoted \(y_i, i = 1, 2, \ldots, n-1 \) are the subdivision vertices in \(x_i x_{i+1} \), \(i = 1, 2, \ldots, n-1 \). Next, the vertices of distance 1 from the center \(x_i \) are defined as the intermediate vertices, denoted by \(l_i^j, i = 1, 2, \ldots, n, j = 1, 2, \ldots, k-1 \) and the \(t \)-th leaf of the intermediate vertices \(l_i^j \) are denoted by \(l_i^j t (t = 1, 2, \ldots, m) \).

In [6], Asmiati et al. determined the locating chromatic number of \(nS_{k,m} \) for \(k \leq m \), where \(k \geq 3 \) and \(m \geq 2 \), as follows.

\[
\chi_L(nS_{k,m}) = \begin{cases}
 m + 1, & 1 \leq n \leq \left\lfloor \frac{m}{k-1} \right\rfloor; \\
 m + 2, & \text{otherwise}.
\end{cases}
\]

In this paper we will discuss the locating chromatic number of \(nS_{k,m} \) for \(k > m \), where \(k \geq 3 \) and \(m \geq 2 \).

2. Main Results

In this section, we will discuss about the locating chromatic number of \(nS_{k,m} \) for \(n \geq 1 \) and \(k > m, k \geq 3, m \geq 2 \).

Lemma 2.1. Let \(c \) be a coloring on \(nS_{k,m} \) using \((k-a)\) colors, where \(k > m, k \geq 3, m \geq 2 \), \(a \geq 0 \), \(a = k - m - 1 \). Coloring \(c \) is a locating coloring if and only if \(c(l_i^j) = c(l_s^t) \), \(j \neq n \) and \(i \neq s \) such that \(\{c(l_i^j)\} | t = 1, 2, 3, \ldots, m \} \) and \(\{c(l_n^j)\} | t = 1, 2, 3, \ldots, m \} \) are two different sets.
Proof. Consider \(P = \{ c(l_{jt}^i) \mid t = 1, 2, 3, \ldots, m \} \) and \(Q = \{ c(l_{nt}^i) \mid t = 1, 2, 3, \ldots, m \} \). Let \(c \) be a locating coloring of \(nS_{k,m}, k > m, k \geq 3, m \geq 2, a \geq 0 \), dan \(c(l_{jt}^i) = c(l_{nt}^i) \), for some \(j \neq n \), and \(i \neq s \). Suppose that \(P = Q \). Since \(d(l_{jt}^i, u) = d(l_{nt}^i, u) \) for each \(u \in V \setminus \{ l_{jt}^i \cup l_{nt}^i \} \), then the color codes of \(l_{jt}^i \) and \(l_{nt}^i \) are the same. So, \(c \) is not a locating coloring, a contrary. As the result, \(P \neq Q \).

Let \(\Pi \) be a partition of \(V(G) \) with \(|\Pi| \geq m \). Consider \(c(l_{jt}^i) = c(l_{nt}^i), j \neq n, \) dan \(i \neq s \). Since \(P \neq Q \), then there are two colors, namely \(x \) and \(y \) such that \((x \in P, x \notin Q) \) or \((y \in P, y \notin Q) \). Next, we will show that every \(v \in V(nS_{k,m}) \) have different color codes.

- It is clear that \(c_{\Pi}(l_{jt}^i) \neq c_{\Pi}(l_{nt}^i) \), since their color codes are different in the \(x \)-ordinat or \(y \)-ordinat.
- If \(c(l_{jt}^i) = c(l_{nt}^i) \), for each \(l_{jt}^i \neq l_{nt}^i \), then we divide two cases to show that \(c_{\Pi}(l_{jt}^i) \neq c_{\Pi}(l_{nt}^i) \)
 - Case 1: If \(c(l_{jt}^i) = c(l_{nt}^i) \), then based on the previous proof \(P \neq Q \). So, \(c_{\Pi}(l_{jt}^i) \neq c_{\Pi}(l_{nt}^i) \).
 - Case 2: Consider \(c(l_{jt}^i) = p_1 \) and \(c(l_{nt}^i) = p_2 \), where \(p_1 \neq p_2 \). Then \(c_{\Pi}(l_{jt}^i) \neq c_{\Pi}(l_{nt}^i) \) because their color codes are different at least in the \(p_1 \)-ordinat and \(p_2 \)-ordinat.
- If \(c(x_i) = c(l_{jt}^i) \), then the color code of \(c_{\Pi}(x_i) \) contains at least two components with value 1, whereas in \(c_{\Pi}(l_{jt}^i) \) contains exactly one component with value 1. So, \(c_{\Pi}(x_i) \neq c_{\Pi}(l_{jt}^i) \).
- If \(c(y_i) = c(l_{jt}^i) \), then the color code of \(c_{\Pi}(y_i) \) contains at least two components with values 1, whereas in \(c_{\Pi}(l_{jt}^i) \) contains exactly one component with value 1. So, \(c_{\Pi}(y_i) \neq c_{\Pi}(l_{jt}^i) \).

From all cases, we can see that all vertices in \(nS_{k,m} \) have different color codes, so \(c \) is a locating coloring. \(\square \)

Lemma 2.2. Let \(n \geq 1, k > m, k \geq 3, m \geq 2, a \geq 0, \) and \(a = k - m - 1 \). If \(c \) is a locating coloring of \(nS_{k,m} \) using \(k - a \) colors and \(H(a) = \left[\frac{(k - a - 1)(k - a - 1)}{m} \right] \), then \(n \leq H(a) \).

Proof. Let \(c \) be a \((k - a)\)-locating coloring of \(nS_{k,m} \). For some \(j \), consider \(c(l_{jt}^i) \) as the color of \(l_{jt}^i \), then the color combination of \(\{ l_{jt}^i \mid t = 1, 2, 3, \ldots, m \} \) is \((k - a - 1)\). Since one color has been used for the central vertex \(x \), then there are \((k - a - 1)\) colors left to be assigned to \(l_{jt}^i \), for each \(i = 1, 2, \ldots, n \) and \(j = 1, 2, 3, \ldots, k - 1 \). By Lemma 2.1, the maximum number for \(n \) is
\[
\left[\frac{(k - a - 1)(k - a - 1)}{m} \right] = H(a), a \geq 0. \square
\]

Theorem 2.1. Let \(nS_{k,m} \) be some certain amalgamation of stars for \(a \geq 0, k > m, k \geq 3, m \geq 2, a = k - m - 1 \). Then
\[
\chi_L(nS_{k,m}) = \begin{cases}
 k - a, & \text{if } 1 \leq n \leq H(a), \\
 k - a + 1, & \text{otherwise}.
\end{cases}
\]
Proof. First, we determine the lower bound of $\chi_L(nS_{k,m})$ for $1 \leq n \leq H(a) = \left\lceil \frac{(k-a-1)(k-a-1)^{m-1}}{k-1} \right\rceil$. Since every vertex l_j^i for $i = 1, 2, 3, \ldots, n$ and $j = 1, 2, 3, \ldots, k-1$ are adjacent to $m = k-a-1$ leaves, then by Corollary 1.1, we have $\chi_L(nS_{k,m}) \geq k-a$.

To determine the upper bound of $\chi_L(nS_{k,m})$ for $1 \leq n \leq H(a) = \left\lceil \frac{(k-a-1)(k-a-1)^{m-1}}{k-1} \right\rceil$, let c be a coloring of $V(nS_{k,m})$ using $(k-a)$ colors. We assign the coloring as follows.

- $c(x_i) = 1$, for $i = 1, 2, 3, \ldots, n$.
- $c(y_i) = 2$, for odd i and 3 for even $i = 1, 2, 3, \ldots, n$.
- Color of l_i^j for each $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, (k-1)$ given color $2, 3, \ldots, (k-a)$, respectively.
- $\{c(l_i^j)\} = \{1, 2, 3, \ldots, k-a\} \setminus \{c(l_i^j)\}$ for $t = 1, 2, 3, \ldots, m$.

Next, we will show that all vertices in $V(nS_{k,m})$ have different color codes. Consider $u, v \in V(nS_{k,m})$ and $c(u) = c(v)$. Then we have the following cases.

- If $u = x_i, v = x_k$ for some i, k and $i \neq k$, then $c_{\Pi}(u) \neq c_{\Pi}(v)$ because $c(l_i^j) \neq c(l_k^j)$ for each $i = 1, 2, \ldots, (k-1)$.
- If $u = x_i, v = l_i^hj$ for some i, h, j, t, then in $c_{\Pi}(u)$ does not have component value four, whereas in $c_{\Pi}(v)$, exactly one component has value 4. So, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = y_i, v = l_j^i$ for some i, j, then in $c_{\Pi}(u)$ exactly two components have value 1, whereas in $c(v)$, at least three components have value 1. So, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = y_i, v = l_j^k$ for some i, k, j and $i \neq k$, then in $c_{\Pi}(u)$ exactly two components have value 1, whereas in $c(v)$, at least three components have value 1. So, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = y_i, v = l_j^t$ for some i, j, t, then in $c_{\Pi}(u)$, exactly two components have value 1, whereas in $c(v)$, exactly one component has value 1. As a result, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = y_i, v = l_j^k$ for some i, k, j, t and $i \neq k$, then in $c_{\Pi}(u)$ at least two components have value 1, whereas in $c(v)$, exactly one component has value 1. So, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = l_i^j, v = l_j^i$ for some i, j, t, then in $c_{\Pi}(u)$ at least two components have value 1, whereas in $c(v)$, exactly one component has value 1. As a result, $c_{\Pi}(u) \neq c_{\Pi}(v)$.
- If $u = l_i^j, v = l_j^ht$ for some i, j, k, h, t and $i \neq k, j \neq h$, then in $c_{\Pi}(u)$, at least two components have value 1, whereas in $c(v)$, exactly one component has value 1. So, $c_{\Pi}(u) \neq c_{\Pi}(v)$
- If $u = l_i^j, v = l_j^ht$ for some $i, j, h, t, j \neq h$. Since $\{c(l_i^j)\} \neq \{c(l_j^h)\}$, then $c_{\Pi}(u) \neq c_{\Pi}(v)$.
Since all vertices have different color codes, then c is a locating coloring on $nS_{k,m}$. Thus, $\chi_L(nS_{k,m}) \leq k - a$ for $n \leq H(a)$.

Next, we discuss the locating chromatic number of $nS_{k,m}$ for $n > H(a)$.

By Corollary 1.1, we have the trivial lower bound, $\chi_L(S_{k,m}) \geq k - a$ for $H(a)$. Suppose that c is a locating coloring using $(k-a)$ colors on $nS_{k,m}$ for $k \geq m$, $k \geq 3$, $m \geq 2$, and $n \geq H(a)$. Since $n \geq H(a)$, then there are $i,j,k,t, i \neq k$ and \{c(l^i_j), c(l^j_t)\} = \{c(l^k_j), c(l^k_t)\} = \{1,2,3,\ldots,k-a\} such that $c(l^i_j) = c(l^j_t)$ for some $j = 1, 2, 3, \ldots, k-1, t = 1, 2, 3, \ldots, m$, a contrary. Thus, $\chi_L(S_{k,m}) \geq k - a + 1$ for $n > H(a)$.

Let c be a coloring on $nS_{k,m}$ using $(k-a+1)$ colors. We assign the coloring as follows.

- $c(x_i) = 1$, for $i = 1, 2, 3, \ldots, n$.
- $c(y_i) = 2$, for odd i and 3 for even $i = 1, 2, 3, \ldots, n$.
- For $j = 1, 2, 3, \ldots, (k-1)$, $c(l^j) = 2$, for odd i and 3 for even $i = 1, 2, 3, \ldots, n$.
- If $A = \{1, 2, \ldots, k-a+1\}$, define:

$$\{c(l^j_{ij}) | t = 1, 2, \ldots, m)\} = \begin{cases} A \setminus \{1, k-a\} & \text{if } i = 1, \\ A \setminus \{k-a+1\} & \text{otherwise.} \end{cases}$$

The maximum number of colored p is $\binom{k-a-1}{m}$ for any p. We can do that because $n \geq H(a)$. So, $c(l^i_j) = c(l^s_n)$, $j \neq n$, dan $i \neq s$. Thus, we can arrange such that \{c(l^j_{ij}) | $t = 1, 2, 3, \ldots, m)\} \neq \{c(l^s_{nt}) | t = 1, 2, 3, \ldots, m)\}. As the result, by Lemma 2.1, c is a locating coloring. Thus, $\chi_L(nS_{k,m}) \leq k - a + 1$ for $n > H(a)$.

As the conclusion, we obtain that $\chi_L(nS_{k,m}) = k - a + 1$. □

For an illustration, we give the locating-chromatic coloring of $nS_{5,3}$ for $1 \leq n \leq 4$ in Figure 1 and $nS_{5,3}$ for $n > 4$ in Figure 2.

![Figure 1. A minimum locating coloring of 4S_{5,3}](image-url)
Further Results on Locating Chromatic Number...

Asmiati, L. Yulianti and C. I. T. Widyastuti

Figure 2. A minimum locating coloring of $nS_{5,3}$ for $n > 4$, $a = 0$

References

