Local antimagic vertex coloring of unicyclic graphs

Nuris Hisan Nazulaa, Slaminb, Dafika

aMathematics Education Study Program, University of Jember, Indonesia
bInformatics Study Program, University of Jember, Indonesia

nuris.h.nazula@gmail.com, slamin@unej.ac.id, d.dafik@unej.ac.id

Abstract

The local antimagic labeling on a graph G with $|V|$ vertices and $|E|$ edges is defined to be an assignment $f : E \rightarrow \{1, 2, \ldots, |E|\}$ so that the weights any two adjacent vertices u and v are distinct, that is, $w(u) \neq w(v)$ where $w(u) = \sum_{e \in E(u)} f(e)$ and $E(u)$ is the set of edges incident to u. Therefore, any local antimagic labeling induces a proper vertex coloring of G where the vertex u is assigned the color $w(u)$. The local antimagic chromatic number, denoted by $\chi_{la}(G)$, is the minimum number of colors taken over all colorings induced by local antimagic labelings of G. In this paper, we present the local antimagic chromatic number of unicyclic graphs that is the graphs containing exactly one cycle such as kite and cycle with two neighbour pendants.

Keywords: local antimagic labeling, vertex coloring, unicyclic graphs, kite, cycle with two neighbour pendants

Mathematics Subject Classification : 05C78, 05C15

DOI: 10.19184/ijc.2018.2.1.4

1. Introduction

Let $G = (V, E)$ be a finite, simple, connected and undirected graph. The local antimagic labeling on a graph G with $|V|$ vertices and $|E|$ edges is defined to an assignment $f : E \rightarrow \{1, 2, \ldots, m\}$ so that the weights any two adjacent vertices are distinct, that is, $w(u) \neq w(v)$ where $w(u) = \sum_{e \in E(u)} f(e)$ and $E(u)$ is the set of edges incident to u. Therefore, any local antimagic labeling induces a proper vertex coloring of G where the vertex u is assigned the color $w(u)$. The local antimagic chromatic number, denoted by $\chi_{la}(G)$, is the minimum number of colors taken...
over all colorings induced by local antimagic labelings of \(G \). This concept was recently introduced by Arumugam et al. [1].

In the paper [1], Arumugam et al. presented the exact value of the local antimagic chromatic number of some families of graphs as follows.

- Complete graph \(K_n \) on \(n \geq 3 \) vertices, \(\chi_{la}(K_n) = n \).
- Star \(K_{1,n-1} \) on \(n \geq 3 \) vertices, \(\chi_{la}(K_{1,n-1}) = n \).
- Path \(P_n \) on \(n \geq 3 \) vertices, \(\chi_{la}(P_n) = 3 \).
- Cycle \(C_n \) on \(n \geq 3 \) vertices, \(\chi_{la}(C_n) = 3 \).
- Friendship graph \(F_n \) for \(n \geq 2 \), \(\chi_{la}(F_n) = 3 \).
- Friendship graph \(F_n \) for \(n \geq 2 \) by removing an edge \(e \), \(\chi_{la}(F_n - \{e\}) = 3 \).
- Complete bipartite graph \(K_{m,n} \) for \(m,n \geq 2 \), \(\chi_{la}(K_{m,n}) = 2 \) if and only if \(m \equiv n \pmod{2} \).
- Complete bipartite graph \(K_{2,n} \) for \(n \geq 2 \), \(\chi_{la}(K_{2,n}) = 2 \) for even \(n \geq 2 \) and \(\chi_{la}(K_{2,n}) = 3 \) for odd \(n \geq 3 \) or \(n = 2 \).
- Graph \(L_n \) for \(n \geq 2 \) that is obtained by inserting a vertex to each edge \(vv_i, 1 \leq i \leq n - 1 \), of the star, \(\chi_{la}(L_n) = n + 1 \).
- Wheel \(W_n \) of order \(n + 1 \) for \(n \geq 3 \), \(\chi_{la}(W_n) = 4 \) if \(n \equiv 1, 3 \pmod{4} \), \(\chi_{la}(W_n) = 3 \) if \(n \equiv 2 \pmod{4} \), and \(3 \leq \chi_{la}(W_n) \leq 5 \) if \(n \equiv 0 \pmod{4} \).

Furthermore, Arumugam et al. [1] showed that for any tree \(T \) with \(l \) leaves, \(\chi_{la}(T) \geq l + 1 \) and for the graph \(H = G + \bar{K}_2 \) where \(G \) is a graph of order \(n \geq 4 \), then

\[
\chi_{la}(G) + 1 \leq \chi_{la}(H) \leq \begin{cases}
\chi_{la}(G) + 1 & \text{for } n \text{ is even} \\
\chi_{la}(G) + 2 & \text{otherwise.}
\end{cases}
\]

In this paper, we present the local antimagic chromatic number of unicyclic graphs such kite and cycle with two neighbour pendants. A graph is called unicyclic if it is connected and contains exactly one cycle. Therefore, a graph is unicyclic if and only if it is connected and has size equal to its order [4]. A kite, denoted by \(Kt_{n,m} \), consists of a cycle of length \(n \) with a \(m \)-edge path (the tail) attached to one vertex [2].

2. Main Results

We start this section with a new result on the local antimagic chromatic number of the kite graph in the following theorem.

Theorem 2.1. For the kite \(Kt_{n,m} \) with \(n \geq 3 \) and \(m \geq 1 \), \(\chi_{la}(Kt_{n,m}) = 3 \).
Proof. Let $K_{t,n,m}$ be the kite with $n \geq 3$ and $m \geq 1$. The vertex set of $K_{t,n,m}$ is $V = \{u_i|1 \leq i \leq n\} \cup \{v_j|1 \leq j \leq m\}$ and the edge set is $E = \{u_iu_{i+1}|1 \leq i \leq n - 1\} \cup \{u_nv_n\} \cup \{u_1v_1\} \cup \{v_jv_{j+1}|1 \leq j \leq m - 1\}$.

Label the edges of $K_{t,n,m}$ using a bijection $f : E \rightarrow \{1, 2, \ldots, n + m\}$ below.

$$
f(u_iu_{i+1}) = \begin{cases}
\frac{m+1}{2} + \frac{i+1}{2} - 1 & \text{for odd } m \text{ and odd } i \\
\frac{m+1}{2} + \frac{n}{2} + \left\lceil \frac{n-1}{2} \right\rceil - \frac{i}{2} + 1 & \text{for odd } m \text{ and even } i \\
\frac{m+1}{2} + \frac{n}{2} + \left\lceil \frac{n+1}{2} \right\rceil - \frac{i+1}{2} + 1 & \text{for even } m \text{ and odd } i \\
\frac{m+1}{2} + \frac{n}{2} & \text{for even } m \text{ and even } i
\end{cases}
$$

$$
f(u_nv_1) = \begin{cases}
\frac{m}{2} + \frac{n}{2} + n & \text{for even } m \\
\frac{m}{2} + \frac{n}{2} + n + 1 & \text{for odd } m
\end{cases}
$$

$$
f(v_jv_{j+1}) = \begin{cases}
\frac{m-1}{2} - \frac{j+1}{2} + 1 & \text{for odd } m \text{ and odd } j \\
\frac{m-1}{2} - \frac{j}{2} & \text{for even } m \text{ and odd } j \\
\frac{m-1}{2} + \frac{j+1}{2} + n + 1 & \text{for odd } m \text{ and even } j \\
\frac{m-1}{2} + \frac{j}{2} + n & \text{for even } m \text{ and even } j
\end{cases}
$$

It is easy to see that f is a local antimagic labeling and the weight of vertices are

$$w(u_i) = \begin{cases}
\frac{3m}{2} + 2\left\lceil \frac{n+1}{2} \right\rceil + \left\lceil \frac{n}{2} \right\rceil & \text{for even } m \text{ and } i = 1 \\
n + m + 1 & \text{for even } (m + i) \\
n + m & \text{for odd } (m + i) \\
\frac{3m-3}{2} + \left\lceil \frac{n}{2} \right\rceil + n & \text{for even } m \text{ and } i = 1
\end{cases}
$$

$$w(v_i) = \begin{cases}
n + m & \text{for even } (m + j) \\
n + m + 1 & \text{for odd } (m + j)
\end{cases}
$$

Thus, $\chi_{la}(K_{t,n,m}) \leq 3$. To show the lower bound, we can use the local antimagic chromatic number of cycle C_n due to Arumugam et al. [1]. Since for $n \geq 3$, $\chi_{la}(C_n) = 3$ and the kite $K_{t,n,m}$ contains a cycle C_n, it easy to see that $\chi_{la}(K_{t,n,m}) \geq 3$. Therefore $\chi_{la}(K_{t,n,m}) = 3$. □

Figure 1 shows an example of the local antimagic vertex coloring of the kite $K_{5,6}$ with the local antimagic chromatic number equals to 3.

We note that a n-pan graph, denoted by P_g_n, is the graph obtained by joining a cycle graph C_n to a singleton graph K_1 with a bridge. In other words, the n-pan graph is a special case of the kite graph $K_{t,n,m}$ when $m = 1$. Consequently,

Corollary 2.1. For the n-pan graph P_g_n with $n \geq 3$, $\chi_{la}(P_g_n) = 3$. □

In the next theorem, we present the local antimagic chromatic number of another unicyclic graph, that is the cycle with two neighbour pendants, as follows.

Theorem 2.2. For the cycle with two neighbour pendants C_{p_n} with $n \geq 3$, $\chi_{la}(C_{p_n}) = 4$. □
Local antimagic vertex coloring of unicyclic graphs | N. H. Nazula, Slamin and Dafik

Figure 1. The local antimagic vertex coloring of $K_{t_5,6}$ with $\chi_{la}(K_{t_5,6}) = 3$

Proof. Let C_p_n be the cycle with two neighbour pendants C_p_n with $n \geq 3$. The vertex set of C_p_n is $V = \{u_i | 1 \leq i \leq n\} \cup \{v_1, v_2\}$ and the edge set is $E = \{u_i u_{i+1} | 1 \leq i \leq n - 1\} \cup \{u_n v_1\} \cup \{u_1 v_1, u_2 v_2\}$.

Label the edges of C_p_n using a bijection $f : E \to \{1, 2, \ldots, n + 2\}$ below.

\[
\begin{align*}
 f(u_i u_{i+1}) &= \begin{cases}
 \frac{i+1}{2} & \text{for odd } i \\
 n + 1 - \frac{i}{2} & \text{for even } i
 \end{cases} \\
 f(u_n u_1) &= \left\lfloor \frac{n + 1}{2} \right\rfloor \\
 f(u_i v_i) &= n + i & \text{for } i = 1, 2
\end{align*}
\]

It is easy to see that f is a local antimagic labeling and the weight of vertices are

\[
\begin{align*}
 w(u_i) &= \begin{cases}
 \left\lfloor \frac{3n+6}{2} \right\rfloor & \text{for } i = 1 \\
 2n + 3 & \text{for } i = 2 \\
 n + 2 & \text{for odd } i \geq 3 \\
 n + 1 & \text{for even } i \geq 4
 \end{cases} \\
 w(v_i) &= n + i & \text{for } i = 1, 2
\end{align*}
\]

Thus $\chi_{la}(C_p_n) \leq 4$. To show the lower bound, we suppose that $f(u_1 v_1) = m_1$ and $f(u_2 v_2) = m_2$. Then $w(v_1) = m_1$, $w(v_2) = m_2$, $w(u_1) > m_1$ and $w(u_2) > m_2$. Clearly, $w(v_1) \neq w(v_2)$. Since u_1 is neighbour of u_2, then $w(u_1) \neq w(u_2)$. This implies that $\chi_{la}(C_p_n) \geq 4$. We conclude that $\chi_{la}(C_p_n) = 4$.

Figure 2 shows an example of the local antimagic vertex coloring of the cycle with two neighbour pendants C_p_6 with the local antimagic chromatic number equals to 4.

3. Conclusion

Another family of unicyclic graph is a sun. A sun, denoted by Su_n, is a cycle on n vertices C_n with an edge terminating in a vertex of degree 1 attached to each vertex [2]. The local antimagic chromatic number of the sun Su_n has not been discovered. Consequently, we have the following open problems.

Problem 1. Determine the local antimagic chromatic number of sun.
In general,

Problem 2. Determine the local antimagic chromatic number of some families of graph.

Acknowledgement
This research is supported by DRPM Ditjen Penguatan Risbang Kemenristekdikti under Pencarian Tim Pascasarjana 2017 research grant.

Bibliography

