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Abstract

A property P is defined to be a nonempty isomorphism-closed subclass of the class of all finite
simple graphs. A nonempty set S of vertices of a graph G is said to be a P-set of G if G[S] € P.
The maximum and minimum cardinalities of a P-set of G are denoted by Mp(G) and mp(G),
respectively. If S is a P-set such that its cardinality equals Mp(G) or mp(G), we say that S is an
Mp-set or an mp-set of GG, respectively. In this paper, we not only define six types of property P
by the using concepts of graph product and generalized graph product, but we also obtain Mp and
mp of product graphs in each type and characterize its Mp-set.
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1. Introduction

Throughout this paper, all graphs are considered to be finite and simple. Let G = (V, E') be a
graph. For a subset S of V, the induced subgraph of S will be denoted by G[S]. A subgraph H of
G is said to be spanning whenever V (H) = V(G). We remark that a graph without edges is called
an empty graph. For other graph terminologies and notations, we refer the reader to [5].

Given two graphs GG and H; a product of G and H, denoted by G * H, is a graph with the
vertex set V(G) x V(H). Many definitions exist that are known as the product of G and H,
especially the Cartesian, the direct, the strong and the lexicographic products. The graph G * H is
called a Cartesian product of G and H if two vertices (vy, h1) and (v, he) are adjacent whenever
vive € E(G) and hy = hy, or v; = vg and hihy € E(H). The graph G * H is called a direct
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product of G and H if two vertices (vy, k1) and (ve, ho) are adjacent whenever v;v, € E(G) and
hihy € E(H). The graph G * H is called a strong product of G and H if it is a Cartesian or direct
product. The graph G x H is called a lexicographic product of G and H if two vertices (vy, hy) and
(v, ho) are adjacent whenever vivy € E(G), or v; = vy and hihy € E(H). Additionally, G x H
is called a disjoint product of G and H if two vertices (vq, hy) and (v, hy) are adjacent whenever
vy = vy and hyhy € E(H). For a detailed treatment of graph products, we refer the reader to [4].

More generally, given graphs G = (V| E) and H, = (V,, E,) for every x € V; a generalized
product of G and (H,),ev, denoted by G * (H,),ev, is a graph with the vertex set | J, .., ({z} x V;).
The graph G * (H,.).cv is called a generalized Cartesian product of G and (H,,),cv if two vertices
(x,v,) and (y,v,) are adjacent whenever zy € E and v, = v,, or x = y and v,v, € E,. The
graph G * (H,),cy is called a generalized direct product of G and (H,).cy if two vertices (x, v,,)
and (y,v,) are adjacent whenever zy € E and v,v, € E,. The graph G * (H,),cyv is called a
generalized strong product of G and (H,),cy if it is a generalized Cartesian or generalized direct
product. The graph G * (H,).cv is called a generalized lexicographic product of G and (H,),cv
if two vertices (z,v,) and (y,v,) are adjacent whenever zy € E, or x = y and v,v, € E,.
Additionally, G % (H, ) ey is called a generalized disjoint product of G and (H,,),cy if two vertices
(x,v,) and (y,v,) are adjacent whenever + = y and v,v, € E,. Evidently, if H, = H for any
vertex © € V, then the resulting graph is the product G « H of two graphs G and H. In order to
properly study graph products, we need some definitions that consider the set product of sets A and
B. In particular, if S C A x B, we define m1(S) = {a : (a,b) € S where b € B}. For s € (),
we define 74(S) = {b: (s,b) € S}.

Let Z denote the class of all finite simple graphs. For a subclass P of Z, P is said to be
isomorphism-closed if H € P whenever G € P and G is isomorphic to H. A (graphical) property
means a nonempty isomorphism-closed subclass of Z. We also say that a graph G has the property
Pif G € P. A nonempty set S of vertices of a graph G is said to be a P-set of G if G[S]| € P. For
a given property U, a property P is said to appear in U, whenever there is a P-set of GG for each
G € U. For properties U; and Us, we define the property U * Us to be the set {G « H : G € U;
and H € Uy} when we refer * as a usual product, and the set {G * (H,).ev : G = (V,E) € Uy
and H, = (V,, E,) € Uy for all z € V'} when we refer * as a generalized product. For a survey of
properties, we refer the reader to [2].

Given a property U and a property P appearing in U; for a graph G € U, the maximum cardi-
nality of a P-set in G is called the Mp-number of G and denoted by Mp(G) while the minimum
cardinality of a P-set in G is called the mp-number of G and denoted by mp(G). If S is a P-set
of a graph G such that |S| = Mp(G) or |S| = mp(G), we say that S is an Mp-set or an mp-set
of G, respectively. Given a property I/, a property O appearing in U/ and a property P appearing
inU *U; P is said to be

(1) left composed by @ if it satisfies:
for any G, H € U and a nonempty subset S of V(G x H), we have

Sis a P-set of G x H if and only if 71 (S) is a Q-set of G.

(ii) right composed by () if it satisfies:
for any GG, H € U and a nonempty subset S of V(G x H), we have

Sis a P-set of G x H if and only if 7,4(S) is a Q-set of H for every s € m((S).
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(iii) composed by () if it is left and right composed by Q).

(iv) left generalized composed by () if it satisfies:
forany G = (V, F), H, € U for every z € V and a nonempty subset S of V(G * (H;).cv ),
we have

Sis a P-set of G x (H,),cv if and only if 71 (.5) is a Q-set of G.

(v) right generalized composed by () if it satisfies:
forany G = (V, E), H, € U for every x € V and a nonempty subset S of V(G * (H;).cv)),
we have

S is a P-set of G x (H,).ey if and only if 74(S) is a Q-set of H, for every s €
7T1(S).

(vi) generalized composed by () if it is left and right generalized composed by Q).

Obviously, every i*" composed property is an i*" generalized composed property for i = 1,2, 3.
We list below some examples of the generalized composed properties.

* If x is a generalized lexicographic product, i/ =Z and P = Q = {G € 7 : GG is connected},
then P is a left generalized composed by () property.

* If x is a generalized disjoint product with a fixed positive integer r, i/ = Z and P = Q =
{G € T : G is an r-regular graph}, then P is a right generalized composed by () property.

o If * is a generalized lexicographic product, Y = Z and P = Q = {G € T : GG is acyclic},
then P is a generalized composed by () property.

* If % a is generalized lexicographic product, /{ = Z and P = Q = {G € Z : G is empty},
then P is a generalized composed by () property.

o If x a is generalized lexicographic product,  =Z and P = Q = {G € Z : G is complete},
then P is a generalized composed by () property.

Some composed and generalized composed properties have been discovered. In 1977, Ravindra
and Parthasarathy [8] found that {G € Z : G is perfect} is a composed property for a lexicographic
product. In 1978, Bollobas [1] generalized the result of Mandrescu and showed that {G € Z : G
is c-perfect} is a generalized composed property for a generalized lexicographic product. In 1991,
Mandrescu [6] showed that {G € Z : G is c-perfect} is a composed property for a Cartesian
product. From these three examples of discovering property P, we do still not know about the
expression of Mp of such graph products. However, in 1975, Geller and Stahl [3] obtained a graph
parameter called the independence number «(G * H) of a lexicographic product G x H as follows
a(G* H) = a(G)a(H), ie., Mp(G « H) = Mp(G)Mp(H) where P = {G € T : GG is empty}.
Furthermore, it is easy to show that this product P is a composed property. This motivates us to
find Mp and mp in each type of property P. Determining graph parameter of a graph product
in terms of its factors is well studied in graph theory. In this paper, we continue the study of the
Mp of generalized product of graphs having a generalized composed property. Namely, Sections
2, 3 and 4 provide results regarding the Mp-number of generalized product of graphs where P is
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left, right and generalized composed properties, respectively. Finally, Section 5 gives concluding
remarks on the mp, gives some applications to specific graph products, properties and parameters
of results in Sections 2, 3 and 4 and thanks to our various funding.

2. Left Generalized Composed Properties

In this section, we begin with the Mp-number of generalized product of graphs where P is a
left generalized composed property.

Theorem 2.1. For a property U, let Q be a property appearing in U and P a property appearing
inU «U such that P is left generalized composed by Q). Further, let G = (V| E), H, € U for every
x € V. We have

Mp (G (Hy)zey) = max {Z \V(H,)|: Sisa Q-set ofG} .

zes
Proof. We first show that Mp(G * (H,)zev) < max{ > |V (H,)| : Sisa Q-setof G}. Let
L be an Mp-set of G * (H,),cy. By the definition of P, 7 (L) is a Q-set of G. Thus Mp(G *

(H)eer) = 1L = |Uremipy (2} X 7oL)] = Srcm, sy e} % 7oL)] = Tpmy I D)] <
> vem |VH,)| <max{ > o |V(H,)|:SisaQ-setof G}.

Now, we show the rest that Mp(G * (Hy)zev) > max{ >  o|V(H,)| : Sis a Q-set of
G}. Let L be a Q-set of G such that >, |V(H,)| = max{ > ¢ |V(H,)| : S is a Q-set of

G). Further, let I/ = |J,_, ({z} x V(H,)). We note that |L'| = ‘Um({x} x V(Hx))‘ _

Sver H{z} x V(HL)| = Y, IV(H,)| = max{ Y, .s|V(H,)| : SisaQ-setof G}. By the
definition of P, L’ is a P-set of G x (H,)cy since m(L') = L is a Q-set of G. Therefore,
Mp(G = (Hy)pev) > max { >, s |V (H,)| : Sisa Q-setof G} since Mp(G * (H,)zev) > |L].

Hence Mp(G * (H,)zev) = max{ > o |V(H,)|: Sisa Q-setof G}. O

Corollary 2.1. For a property U, let Q be a property appearing in U and P a property appearing
inU x U such that P is left composed by Q). Further, let G = (V,E),H, € U forallz € V. If
\V(H,)| = nforall x € V where n is a positive integer, then we have

MP<G * (HI)I€V> = TLMQ(G)
The next corollary is a direct application of Corollary 2.1.

Corollary 2.2. For a property U, let Q be a property appearing in U and P a property appearing
inU x U such that P is left composed by Q). Further, let G,H € U. We have

Mp (G« H) = [V (H)|[Mg(G).

The following result shows a necessary condition of a nonempty vertex set of generalized
product graphs to be an Mp-set.
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Theorem 2.2. For a property U, let Q be a property appearing in U and P a property appearing
inU xU such that P is left generalized composed by Q). Further, let G = (V, E), H, € U for every
x € V and let S be a nonempty subset of V(G * (H, ) ev ). If S is an Mp-set of G x (H,) ey, then
7s(S) = V(Hy) for every s € m(S).

Proof. LetV, = V(H,) forevery x € V. The proof is by contraposition. Assume that 7,(5) # V,,
for some a € m1(S). Clearly, |V,| > |74(S)|. Then ] (Uxems>\{a} ({a} x m(S))) U ({a} x va)]

- \Umw oo} ms»] + Hab x Val = |Unem sy ({2} X 7 (S))] + Vel >

| (Unemnar (23 x 7SN [F17a(8)] = | (Unemsi o (o} x 7a(8)[+] (L} x ma($)) | =
Uisems) {x} %7 (9))| = 151,

By the definition of P, (Uxem(s)\{a} ({x} x 7'('1(5))) U({a} x V,)isaP-setof G (H,)zev.
Therefore, S is not an Mp-set of G * (H,),ev. l

Theorem 2.3. For a property U, let Q be a property appearing in U and ‘P a property appearing
in U x U such that P is left generalized composed by (). Further, let G = (V, E), H, € U for
everyx € V. If |V (H,)| = n for all x € V where n is a positive integer, then S is an Mp-set of
G * (H,)zev if and only if the following conditions hold:

(1) m(S) is an Mg-set of G,
(2) 7s(S) = V(Hy) for every s € my(S).

Proof. By Theorem 2.2, we need to show the rest that 71 (S) is an Mg-set of G. By Corollary 2.1,
we have nMo(G) = Mp(G % (He)aev) = 18] = | Usen,(s) (2} X 72(S)] = T et %
ﬂ-w(S)‘ = ZxETrl(S) ‘Wx(S)’ = ZxEWl(S) |V( )| - Zwal (S) n = ”erm(s) 1 = Tll7T1(S)|
Consequently, Mg(G) = |m1(5)].

For the converse, we assume that (1) and (2) hold. By the definition of P, S'is a P-set of G %
(H,)cv because 71 (.S) is a Q-set of G and 74(S) = V(Hj) forevery s € m(.S). We see that |S| =
)U:cen(s ({[L‘} X 71'96(5))) = erm (S) |{$} X 7T$(S)| = ZxEm(S) |7Tx(5)| = ZxEm(s) |V(Hx)| -
Dovem(s)M =MD peny sy 1 = n|mi(S)| = nMp(G). Hence S is an Mp-set of G * (H,)ev by
Corollary 2.1. O

Next, we characterize the Mp-set of product graphs.

Corollary 2.3. For a property U, let Q be a property appearing in U and P a property appearing
inU x U such that P is left composed by Q). Further, let G,H € U and let S be a nonempty subset
of V(G x H). Then S is an Mp-set of G x H if and only if the following two conditions hold:

(1) m1(S) is an Mp-set of G,

(2) 7s(S) = V(H) for every s € m(S).

We not only obtain the Mp-number of product graphs, but we can also enumerate the number
of Mp-sets of product graphs in the term of the number of My-sets of its graph factors.
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Theorem 2.4. For a property U, let Q be a property appearing in U and ‘P a property appearing
inlU xU such that P is left generalized composed by (). Further, let G = (V, E),H, € U for every
x e V. If|V(H,)| = nforall x € V where n is a positive integer , S is the family of Mp-sets of
G x H, &1 is the family of Mo-sets of G, then

|6’ = |61|-

Proof. We construct an Mp-set of G x H in 2 steps as follows.

Step 1 : Choose an Mo-set S; from G;.

Step 2 : For each x € Sy, build the Mp-set |, g, ({z} X V(H,)) € &.

By the multiplication law and by Corollary 2.3, |&| = &,]. O

Corollary 2.4. For a property U, let Q be a property appearing in U and ‘P a property appearing
in U x U such that P is left composed by Q). Further, let G,H € U. If G is the family of Mp-sets
of G« H and G is the family of Mo-sets of G, then

|6| - |61|-

3. Right Generalized Composed Properties

In this section, we begin with the Mp-number of generalized product of graphs where P is a
right generalized composed property.

Theorem 3.1. For a property U, let Q be a property appearing in U and P a property appearing
in U x U such that P is right generalized composed by Q). Further, let G = (V, E), H, € U for
every x € V. We have

MP(G * (Hx)a:GV) = Z MQ<H:E)

zeV

Proof. We first show that Mp(G * (Hy)zev) < > ,cp Mo(H,). Let L be an Mp-set of G *
(H.)zev. By the definition of P, 7,(L) is a Q-set of H, for all z € m(L). We have |7,(L)| <

Mo(H,) for all z € m(L). Thus Mp(G * (Hy)ser) = |L| = )UM(L) ({z} x WI(L))\ -
Zw€W1(L) |{‘T} X 7T$<L)| = erw1(L) |7T=’D(L)’ < Z:EGWl(L) MQ(HfE) < ZxGV MQ(Hm)

Now, we show the rest that Mp(G * (Hy)pev) > Y oy Mo(H,). Let L, be an Mg-set of H,
for each x € V. Further, let L' = | J, ., ({z} x L,). We note that [L'| = ‘UIEV ({z} x L,)

Yowev ot X Lol = > cv | La|l = > ,ey Mo(H,). By the definition of P, L’ is a P-set of
G % (Hy)zey since m,(L') = L, is a Q-set of H, for all z € my(L') = V. Therefore, Mp(G *
(He)rev) = |V =3 pey Mo(Hy).

Hence M’P(G * (Hx)rGV) = ZxGV MQ(HI> L

Corollary 3.1. For a property U, let Q be a property appearing in U and P a property appearing
inU * U such that P is right generalized composed by Q). Further, let G = (V, E),H,, € U for all
x € V. If Mp(H,) = n forall x € V where n is a positive integer, then we have
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The next corollary is a direct application of Corollary 3.1.

Corollary 3.2. For a property U, let Q be a property appearing in U and P a property appearing
inU x U such that P is right composed by (). Further, let G,H € U. We have

Mp (G« H) = [V(G)[Mg(H).

The following result shows a sufficient condition of a nonempty vertex set of generalized prod-
uct graphs to be an Mp-set.

Theorem 3.2. For a propertyU, let Q be a property appearing inUU and P a property appearing in
U * U such that P is right generalized composed by ). Further, let G = (V, E), H, € U for every
x € V and let S be a nonempty subset of V(G * (Hy)zev ). Then S is an Mp-set of G x (Hy)zev
if and only if the following conditions hold:

(1) m(S) =V,
(2) 7s(S) is an Mg-set of H for every s € m1(S).

Proof. LetV, =V (H,) forallz € V.

The proof is by contraposition. Assume that (1) or (2) does not hold.
Case I: m(S) # V.

Let a € V\m(S) and L, be a Q-set of H,. Then ‘({a} X Lg) U (UIEM(S) ({z} x m(S)))‘ =
|({a} x Lo) US| = {a} x Lq| +|S| = |La| + |S| > |S]| = Mp(G * (H,)sev). Therefore, S
is not an Mp-set of G * (H,).ey since ({a} X La> U (Umem(s) ({z} x WI(S))) is a P-set of

G * (Hx>x€V-
Case 2: m,(S) is not an Mg-set of H for some a € m(.5).
Let L, be an Mg-set of H,. Clearly, Mo(H,) = |Las| > |ma(S)|. Then

| (Unem@nia o} x 7a(8) Ua} x Lo)| = |Usemsnia{z} x ()| + I{a} x Ll =
Usem i (23 % ma(S)] + Lol > | (Usem s (2} X ma(9))| + 7(8)] =
| (Usemsnia Lo} x ()| + 1} x 70l | = | (Usemsna {2} X m(8))) U ({a} x

wa(S))’ - (Um s ({2} m(S))( — |S|. By the definition of P, (Uxem)\ oy ({2} WI(S))>U
({a} x L) is a P-set of G * (H,).cv. Therefore, S is not an Mp-set of G * (H,)zev - O

Next, we characterize the Mp-set of product graphs.

Corollary 3.3. For a property U, let Q be a property appearing in U and P a property appearing
inU «U such that P is right composed by . Further, let G,H € U and let S be a nonempty subset
of V(G x H). Then S is an Mp-set of G x H if and only if the following two conditions hold:

(1) m(S) =V (H),

(2) 75(S) is an Mg-set of H for every s € m(S).
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We not only obtain the Mp-number of product graphs, but we can also enumerate the number
of Mp-sets of product graphs in the term of the number of Mp-sets of its graph factors.

Theorem 3.3. For a property U, let Q be a property appearing in U and ‘P a property appearing
in U * U such that P is right generalized composed by Q). Further, let G = (V, E),H, € U for
every x € V. If & is the family of Mp-sets of G * (H,).cy and S, is the family of Mg-sets of H,
forall x € V, then

&= (6.l

zeV

Proof. We construct an Mp-set of G x H in 2 steps as follows.

Step 1 : For each x € V, choose an Mo-set S, from &,.

Step 2 : Build the Mp-set {z} x S, € &.

By the multiplication law and by Corollary 3.3, |&| = >, |6,/ O

Corollary 3.4. For a property U, let Q be a property appearing in U and P a property appearing
inU x U such that P is right composed by Q). Further, let G,H € U. If S is the family of Mp-sets
of G x H and &' is the family of Mg-sets of H, then

6] = V(&)]|&'].

4. Generalized Composed Properties

In this section, we begin with the Mp-number of generalized product of graphs where P is a
generalized composed property.

Theorem 4.1. For a property U, let Q be a property appearing in U and P a property appearing
in U x U such that P is generalized composed by Q. Further, let G = (V, E), H, € U for every
x € V. We have

Mp(G * (Hy)zey) = max {Z Mg(H,) : Sisa Q-set ofG}

€S

Proof. We first show that Mp (G * (H,)zev) < max { Y .o Mo(H,) : S isan Q-set of G }. Let
L be an Mp-set of G * (H,).cv. By the definition of P, m1(L) is a Q-set of G and 7, (L) is a
Q-set of H, for all z € m(L). We have |r,(L)| < Mg(H,) for all x € m(L). Thus Mp(G *

(Ho)aev) = 1L = [User, o) (12} X 7e(L)] = Saemny e} X 1ol D] = Taery (D] <
erm(L) Mg(H,) < max { Yowes Mo(H,) : Sis a Q-set of G}

Now, we show the rest that Mp (G * (H,)zev) > max { >, s Mo(H,) : Sisa Q-set of G}.
Let L be a Q-set of G and L, be an Mg-set of H, for each x € L such that ) _, Mqo(H,) =

max { Y owes Mo(H,) = Sis a Q-set of G}. Further, let L' = J,., ({} x L,). We note that

] = [User, () % L) | = Socp Hoh 5 Ll = Sy IM] = S, Mo(H,) =
max { ers Mg(H,) : Sisa Q-set of G} By the definition of P, L’ is a P-set of G * (H,),cv
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since m1(L') = Lis a Q-set of G and 7, (L) = L, is a Q-set of H, for all z € m;(L’). Therefore,
Mp(G * (Hy)zev) > |L'| = max { Yowes Mo(H,) : Sis a Q-set of G}.

Hence Mp(G x (H,)zev) = max { Y oses Mo(H,) : Sis a Q-set of G} N

Corollary 4.1. For a property U, let Q be a property appearing in U and P a property appearing
inU xU such that P is generalized composed by Q). Further, let G = (V, E),H, € U forallx € V.
If Mp(H,) = n for all x € V where n is a positive integer, then we have

MP(G * (Hm)aze\/> = TLMQ(G)
The next corollary is a direct application of Corollary 4.1.

Corollary 4.2. For a property U, let Q be a property appearing in U and P a property appearing
inU x U such that P is composed by (). Further, let G,H € U. We have

Mp(G * H) = Mo(G)Mo(H).

The following result shows a necessary condition of a nonempty vertex set of generalized
product graphs to be an Mp-set.

Theorem 4.2. For a property U, let Q be a property appearing in U and P a property appearing
in U * U such that P is generalized composed by Q). Further, let G = (V| E), H, € U for every
x € V and let S be a nonempty subset of V(G x (Hy)zev). If S is an Mp-set of G x (H,) ey, then
7s(S) is an Mg-set of Hy for every s € m(S).

Proof. The proof is by contraposition. Assume that 7,(S) is not an Mg-set of H for some a €
m1(S). Let L, be an Mg-set of H,. Clearly, Mg(H,) = |L4| > |7.(S)|. Then

| (Unemsna (23 x m(8)) U} x Lo)| = Usemsp o ({2} x ma(S))| + Ha} x Lal =
Ui o ({2} % ()| + ILal > (Um( \{a} (o} x () |+ Ima(5)] =
| (Unemnar (23 x ma(SD) | + 1 T} x 7)) | = |Upens) ({2} % 7(S))| = IS]. By the

definition of P, (Uxem(s)\{a} ({x} x WI(S))> ({a} X L,)is a P-set of G (H,).cv. Therefore,
S is not an Mp-set of G * (H,)zev - l

Theorem 4.3. For a property U, let Q be a property appearing in U and P a property appearing
in U x U such that P is generalized composed by Q. Further, let G = (V, E), H, € U for every
x € V. If Mg(H,) = n for all x € V where n is a positive integer, then S is an Mp-set of
G * (H,) ey if and only if the following conditions hold:

(1) m(S) is an Mg-set of G,
(2) 7s(S) is an Mo-set of H for every s € m1(.S).
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Proof. By Theorem 4.2, we need to show the rest that 7, (.S) is an Mg-set of G. By Corollary 4.1,
we have nMo(G) = Mp(G  (Ha)uev) = 18] = [Usen,(s) (1} % 7(8)) | = Lien, (s 1}

ﬂ-x(S)‘ = Zzéﬂ'l(S) |7T$(S)| - erﬁl(S) n = anEﬂ'l(S) 1= n|7T1(S)| Consequently’ MQ<G) =
™1 (S)].

For the converse, we assume that (1) and (2) hold. By the definition of P, S is a P-set of
G * (H,)zev because m(S) € Q and 74(S) € Q for every s € m(S). We see that |S| =

Uzeﬂl(S) ({z} x m(9))| = erm(s) [{z} x 7. (S)] = ZxEWl(S) |7 (S)| = Zmel(S) n=
N vems) L =n|mi(S)|. Hence S'is an Mp-set of G * (H)zev by Corollary 4.1. O

Next, we characterize the Mp-set of product graphs.

Corollary 4.3. For a property U, let Q be a property appearing in U and P a property appearing
in U x« U such that P is composed by (). Further, let G,H € U and let S be a nonempty subset of
V(G * H). Then S is an Mp-set of G x H if and only if the following two conditions hold:

(1) m(S) is an Mg-set of G,
(2) 7s(S) is an Mg-set of H for every s € m;(S).

We not only obtain the Mp-number of product graphs, but we can also enumerate the number
of Mp-sets of product graphs in the term of the number of Mo-sets of its graph factors.

Theorem 4.4. For a property U, let Q be a property appearing in U and P a property appearing
in U * U such that P is generalized composed by (). Further, let G = (V, E),H, € U for every
x € V. If Mg(H,) = nforall x € V where n is a positive integer , & is the family of Mp-sets of
G x H, G is the family of Mg-sets of G and &, is the family of Mo-sets of H,, for all x € V, then

o= T le.l

S51€61 x€S1

Proof. We construct an Mp-set of G x H in 3 steps as follows.

Step 1 : Choose an Mo-set S; from G;.

Step 2 : For each x € S, choose an Mg-set S, from G,.

Step 3 : Build the Mp-set | J,.g ({7} x 5;) € &.

By the multiplication law and by Corollary 4.3, |&] = > g .o, [[ocg, |62l O

Corollary 4.4. For a property U, let Q be a property appearing in U and P a property appearing
in U « U such that P is composed by Q). Further, let G,H € U. If G is the family of Mp-sets of
G x H, Gy is the family of Mg-sets of G and S, is the family of Mg-sets of H, then

(6] = |61]|&,] ">,
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5. Conclusion

For convenience in this section, we denote “composed by” and “generalized composed by’ by
”CB” and "GCB”, respectively. We summarize corresponding results for the mp(G * H) and the
mp(G x (H,)zev) as follows.

For a property U, let Q be a property appearing in I/ and P a property appearing in U x . Let
G = (V,FE), H, € U for every x € V. We have

mp(G) ,if P is left GCB Q:;
mp(G * (Hy)zev) = { min {3, cmo(H,) : Sisasubsetof V} if P is right GCB Q;
min {}" _¢mo(H,): SisaP-setof G} ,if Pis GCB Q.

Further, let G,H € U. We have

mp(Q) ,if P is left CB Q);
mp(G* H) = ¢ mo(H) ,if P is right CB Q;
mp(G)mg(H) ,if PisCB Q.

Next, we give two tables showing some specific results for composed and generalized com-
posed properties obtained by applying our results in Sections 2, 3 and 4.
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‘K[oAnoadsal ‘raquuinu anbrpo oy pue Jequinu douspuadopur Ay} 9JOUIP M pPue O AIYA

o apopue[[] {Hjows-pestg: (*g)o P Ixew omdeigoorxo pazieroudd g {woped-ssiH:7>H} T
O goovpue (1] {Hjos-pestg: ()0 57 K xew omdeiSoorxe] pazieroudd g {1oopedosiH 139} 7
0 gD {pJows-pesig: (*g)mS T {}xewr  omderSoorxol pazieouas 4 {ewdwodsiH 7> H} T
0 gD {Hyows-pesig: (“y)on 7 Ixew  omderSoorxay pazierouad {omphoesinH:15H} T
oadnofg] {pyows-pesig: (“g)o P xew  omdeidoorxa pazieiouss o {fdwastH:75H} I
0 90D wsu (“m)ew K wiofsip paziferousd g {rem3ar-ustH 3> pH} T
O dDO Wl {pjors-pesig:|(*g)Al 57 K xewr  omdeiSoorxel pazierousd B {pajosuuodstH 7> H} T
uoseal (4>7("H) * D)4 x &) d n
sonzadoid pasodwod paziferouarn) ‘g J[qe],
o gorwe (1]l (H)°n (D)o omdeioorxoy d {rooprad-s st : 13 H} 7
o dopuelo]l (H)°w(©)ow  uwesaue)  {amrediqsiH:7 > H)  {wepedosin:iz s pH} {[EmAmuoustH: 7S H}
o g@opue (il (H)°w (D)o dmdersoorxa d {ayred-o st 13 D} z
o gopuelgl (H)om(D)°n dmderdoorxa d {oopadstn - 15 H} 7
S (H)™(D)m  owdeiSoorxa] d {ererdwoo st 5 : 15 H} z
049> (H)°m (D)o  omdeidoorxd] d {orphoestH 13 H} z
oddof¢gl  (H)o(o)o  owmdeiSoonxd] d {fdwe st - 135 H} z
o aowdu  (F)ow|(m)Al  Iuwofsp d {remgar-us19 1 15 D} z
o gowel |(H)A[(D)°  owdessoorxay d {pareuuodsiH : 15 H} z
uosear  ({ * D)4 * 6] d n

sanzadoid pasodwo)

1 d1qeL
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