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Abstract

A property P is defined to be a nonempty isomorphism-closed subclass of the class of all finite
simple graphs. A nonempty set S of vertices of a graph G is said to be a P-set of G if G[S] ∈ P .
The maximum and minimum cardinalities of a P-set of G are denoted by MP(G) and mP(G),
respectively. If S is a P-set such that its cardinality equals MP(G) or mP(G), we say that S is an
MP-set or an mP-set of G, respectively. In this paper, we not only define six types of property P
by the using concepts of graph product and generalized graph product, but we also obtain MP and
mP of product graphs in each type and characterize its MP-set.

Keywords: independence, hereditary property, graphical property, product graph
Mathematics Subject Classification : 05C69, 05C76

1. Introduction

Throughout this paper, all graphs are considered to be finite and simple. Let G = (V,E) be a
graph. For a subset S of V , the induced subgraph of S will be denoted by G[S]. A subgraph H of
G is said to be spanning whenever V (H) = V (G). We remark that a graph without edges is called
an empty graph. For other graph terminologies and notations, we refer the reader to [5].

Given two graphs G and H; a product of G and H , denoted by G ∗ H , is a graph with the
vertex set V (G) × V (H). Many definitions exist that are known as the product of G and H ,
especially the Cartesian, the direct, the strong and the lexicographic products. The graph G ∗H is
called a Cartesian product of G and H if two vertices (v1, h1) and (v2, h2) are adjacent whenever
v1v2 ∈ E(G) and h1 = h2, or v1 = v2 and h1h2 ∈ E(H). The graph G ∗ H is called a direct
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product of G and H if two vertices (v1, h1) and (v2, h2) are adjacent whenever v1v2 ∈ E(G) and
h1h2 ∈ E(H). The graph G ∗H is called a strong product of G and H if it is a Cartesian or direct
product. The graph G∗H is called a lexicographic product of G and H if two vertices (v1, h1) and
(v2, h2) are adjacent whenever v1v2 ∈ E(G), or v1 = v2 and h1h2 ∈ E(H). Additionally, G ∗H
is called a disjoint product of G and H if two vertices (v1, h1) and (v2, h2) are adjacent whenever
v1 = v2 and h1h2 ∈ E(H). For a detailed treatment of graph products, we refer the reader to [4].

More generally, given graphs G = (V,E) and Hx = (Vx, Ex) for every x ∈ V ; a generalized
product ofG and (Hx)x∈V , denoted byG∗(Hx)x∈V , is a graph with the vertex set

⋃
x∈V ({x}×Vx).

The graph G∗ (Hx)x∈V is called a generalized Cartesian product of G and (Hx)x∈V if two vertices
(x, vx) and (y, vy) are adjacent whenever xy ∈ E and vx = vy, or x = y and vxvy ∈ Ex. The
graph G ∗ (Hx)x∈V is called a generalized direct product of G and (Hx)x∈V if two vertices (x, vx)
and (y, vy) are adjacent whenever xy ∈ E and vxvy ∈ Ex. The graph G ∗ (Hx)x∈V is called a
generalized strong product of G and (Hx)x∈V if it is a generalized Cartesian or generalized direct
product. The graph G ∗ (Hx)x∈V is called a generalized lexicographic product of G and (Hx)x∈V
if two vertices (x, vx) and (y, vy) are adjacent whenever xy ∈ E, or x = y and vxvy ∈ Ex.
Additionally,G∗(Hx)x∈V is called a generalized disjoint product ofG and (Hx)x∈V if two vertices
(x, vx) and (y, vy) are adjacent whenever x = y and vxvy ∈ Ex. Evidently, if Hx = H for any
vertex x ∈ V , then the resulting graph is the product G ∗ H of two graphs G and H . In order to
properly study graph products, we need some definitions that consider the set product of setsA and
B. In particular, if S ⊆ A× B, we define π1(S) = {a : (a, b) ∈ S where b ∈ B}. For s ∈ π1(S),
we define πs(S) = {b : (s, b) ∈ S}.

Let I denote the class of all finite simple graphs. For a subclass P of I, P is said to be
isomorphism-closed if H ∈ P whenever G ∈ P and G is isomorphic to H . A (graphical) property
means a nonempty isomorphism-closed subclass of I. We also say that a graph G has the property
P if G ∈ P . A nonempty set S of vertices of a graph G is said to be a P-set of G if G[S] ∈ P . For
a given property U , a property P is said to appear in U , whenever there is a P-set of G for each
G ∈ U . For properties U1 and U2, we define the property U1 ∗ U2 to be the set {G ∗ H : G ∈ U1
and H ∈ U2} when we refer ∗ as a usual product, and the set {G ∗ (Hx)x∈V : G = (V,E) ∈ U1
and Hx = (Vx, Ex) ∈ U2 for all x ∈ V } when we refer ∗ as a generalized product. For a survey of
properties, we refer the reader to [2].

Given a property U and a property P appearing in U ; for a graph G ∈ U , the maximum cardi-
nality of a P-set in G is called the MP-number of G and denoted by MP(G) while the minimum
cardinality of a P-set in G is called the mP-number of G and denoted by mP(G). If S is a P-set
of a graph G such that |S| = MP(G) or |S| = mP(G), we say that S is an MP-set or an mP-set
of G, respectively. Given a property U , a property Q appearing in U and a property P appearing
in U ∗ U ; P is said to be

(i) left composed by Q if it satisfies:
for any G,H ∈ U and a nonempty subset S of V (G ∗H), we have

S is a P-set of G ∗H if and only if π1(S) is a Q-set of G.

(ii) right composed by Q if it satisfies:
for any G,H ∈ U and a nonempty subset S of V (G ∗H), we have

S is a P-set of G ∗H if and only if πs(S) is a Q-set of H for every s ∈ π1(S).
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(iii) composed by Q if it is left and right composed by Q.
(iv) left generalized composed by Q if it satisfies:

for any G = (V,E), Hx ∈ U for every x ∈ V and a nonempty subset S of V (G ∗ (Hx)x∈V ),
we have

S is a P-set of G ∗ (Hx)x∈V if and only if π1(S) is a Q-set of G.

(v) right generalized composed by Q if it satisfies:
for any G = (V,E), Hx ∈ U for every x ∈ V and a nonempty subset S of V (G ∗ (Hx)x∈V )),
we have

S is a P-set of G ∗ (Hx)x∈V if and only if πs(S) is a Q-set of Hs for every s ∈
π1(S).

(vi) generalized composed by Q if it is left and right generalized composed by Q.

Obviously, every ith composed property is an ith generalized composed property for i = 1, 2, 3.
We list below some examples of the generalized composed properties.

• If ∗ is a generalized lexicographic product, U = I and P = Q = {G ∈ I : G is connected},
then P is a left generalized composed by Q property.

• If ∗ is a generalized disjoint product with a fixed positive integer r, U = I and P = Q =
{G ∈ I : G is an r-regular graph}, then P is a right generalized composed by Q property.

• If ∗ is a generalized lexicographic product, U = I and P = Q = {G ∈ I : G is acyclic},
then P is a generalized composed by Q property.

• If ∗ a is generalized lexicographic product, U = I and P = Q = {G ∈ I : G is empty},
then P is a generalized composed by Q property.

• If ∗ a is generalized lexicographic product, U = I and P = Q = {G ∈ I : G is complete},
then P is a generalized composed by Q property.

Some composed and generalized composed properties have been discovered. In 1977, Ravindra
and Parthasarathy [8] found that {G ∈ I : G is perfect} is a composed property for a lexicographic
product. In 1978, Bollobás [1] generalized the result of Mândrescu and showed that {G ∈ I : G
is c-perfect} is a generalized composed property for a generalized lexicographic product. In 1991,
Mândrescu [6] showed that {G ∈ I : G is c-perfect} is a composed property for a Cartesian
product. From these three examples of discovering property P , we do still not know about the
expression of MP of such graph products. However, in 1975, Geller and Stahl [3] obtained a graph
parameter called the independence number α(G ∗H) of a lexicographic product G ∗H as follows
α(G ∗H) = α(G)α(H), i.e., MP(G ∗H) = MP(G)MP(H) where P = {G ∈ I : G is empty}.
Furthermore, it is easy to show that this product P is a composed property. This motivates us to
find MP and mP in each type of property P . Determining graph parameter of a graph product
in terms of its factors is well studied in graph theory. In this paper, we continue the study of the
MP of generalized product of graphs having a generalized composed property. Namely, Sections
2, 3 and 4 provide results regarding the MP-number of generalized product of graphs where P is
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left, right and generalized composed properties, respectively. Finally, Section 5 gives concluding
remarks on the mP , gives some applications to specific graph products, properties and parameters
of results in Sections 2, 3 and 4 and thanks to our various funding.

2. Left Generalized Composed Properties

In this section, we begin with the MP-number of generalized product of graphs where P is a
left generalized composed property.

Theorem 2.1. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗U such that P is left generalized composed by Q. Further, let G = (V,E), Hx ∈ U for every
x ∈ V . We have

MP(G ∗ (Hx)x∈V ) = max

{∑
x∈S

|V (Hx)| : S is a Q-set of G

}
.

Proof. We first show that MP(G ∗ (Hx)x∈V ) ≤ max
{∑

x∈S |V (Hx)| : S is a Q-set of G
}

. Let
L be an MP-set of G ∗ (Hx)x∈V . By the definition of P , π1(L) is a Q-set of G. Thus MP(G ∗
(Hx)x∈V ) = |L| =

∣∣∣⋃x∈π1(L) ({x} × πx(L))
∣∣∣ = ∑

x∈π1(L) |{x} × πx(L)| =
∑

x∈π1(L) |πx(L)| ≤∑
x∈π1(L) |V (Hx)| ≤ max

{∑
x∈S |V (Hx)| : S is a Q-set of G

}
.

Now, we show the rest that MP(G ∗ (Hx)x∈V ) ≥ max
{∑

x∈S |V (Hx)| : S is a Q-set of
G
}

. Let L be a Q-set of G such that
∑

x∈L |V (Hx)| = max
{∑

x∈S |V (Hx)| : S is a Q-set of

G
}

. Further, let L′ =
⋃
x∈L ({x} × V (Hx)). We note that |L′| =

∣∣∣⋃x∈L ({x} × V (Hx))
∣∣∣ =∑

x∈L |{x} × V (Hx)| =
∑

x∈L |V (Hx)| = max
{∑

x∈S |V (Hx)| : S is a Q-set of G
}
. By the

definition of P , L′ is a P-set of G ∗ (Hx)x∈V since π1(L′) = L is a Q-set of G. Therefore,
MP(G ∗ (Hx)x∈V ) ≥ max

{∑
x∈S |V (Hx)| : S is a Q-set of G

}
since MP(G ∗ (Hx)x∈V ) ≥ |L′|.

Hence MP(G ∗ (Hx)x∈V ) = max
{∑

x∈S |V (Hx)| : S is a Q-set of G
}

.

Corollary 2.1. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is left composed by Q. Further, let G = (V,E),Hx ∈ U for all x ∈ V . If
|V (Hx)| = n for all x ∈ V where n is a positive integer, then we have

MP(G ∗ (Hx)x∈V ) = nMQ(G).

The next corollary is a direct application of Corollary 2.1.

Corollary 2.2. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is left composed by Q. Further, let G,H ∈ U . We have

MP(G ∗H) = |V (H)|MQ(G).

The following result shows a necessary condition of a nonempty vertex set of generalized
product graphs to be an MP-set.
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Theorem 2.2. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗U such that P is left generalized composed by Q. Further, let G = (V,E), Hx ∈ U for every
x ∈ V and let S be a nonempty subset of V (G ∗ (Hx)x∈V ). If S is an MP-set of G ∗ (Hx)x∈V , then
πs(S) = V (Hs) for every s ∈ π1(S).

Proof. Let Vx = V (Hx) for every x ∈ V . The proof is by contraposition. Assume that πa(S) 6= Va

for some a ∈ π1(S). Clearly, |Va| > |πa(S)|. Then
∣∣∣(⋃x∈π1(S)\{a} ({x} × πx(S))

)
∪ ({a} × Va)

∣∣∣
=
∣∣∣⋃x∈π1(S)\{a}({x} × πx(S))

∣∣∣+ |{a} × Va| = ∣∣∣⋃x∈π1(S)\{a}({x} × πx(S))
∣∣∣+ |Va| >∣∣∣(⋃x∈π1(S)\{a} ({x} × πx(S))

)∣∣∣+|πa(S)| = ∣∣∣(⋃x∈π1(S)\{a} ({x} × πx(S))
)∣∣∣+| ({a} × πa(S)) | =∣∣∣⋃x∈π1(S) ({x} × πx(S))

∣∣∣ = |S|.
By the definition of P ,

(⋃
x∈π1(S)\{a} ({x} × πx(S))

)
∪ ({a} × Va) is a P-set of G ∗ (Hx)x∈V .

Therefore, S is not an MP-set of G ∗ (Hx)x∈V .

Theorem 2.3. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is left generalized composed by Q. Further, let G = (V,E), Hx ∈ U for
every x ∈ V . If |V (Hx)| = n for all x ∈ V where n is a positive integer, then S is an MP-set of
G ∗ (Hx)x∈V if and only if the following conditions hold:

(1) π1(S) is an MQ-set of G,
(2) πs(S) = V (Hs) for every s ∈ π1(S).

Proof. By Theorem 2.2, we need to show the rest that π1(S) is an MQ-set of G. By Corollary 2.1,
we have nMQ(G) = MP(G ∗ (Hx)x∈V ) = |S| =

∣∣∣⋃x∈π1(S) ({x} × πx(S))
∣∣∣ = ∑x∈π1(S) |{x} ×

πx(S)| =
∑

x∈π1(S) |πx(S)| =
∑

x∈π1(S) |V (Hx)| =
∑

x∈π1(S) n = n
∑

x∈π1(S) 1 = n|π1(S)|.
Consequently, MQ(G) = |π1(S)|.

For the converse, we assume that (1) and (2) hold. By the definition of P , S is a P-set of G ∗
(Hx)x∈V because π1(S) is aQ-set ofG and πs(S) = V (Hs) for every s ∈ π1(S). We see that |S| =∣∣∣⋃x∈π1(S) ({x} × πx(S))

∣∣∣ =∑x∈π1(S) |{x} × πx(S)| =
∑

x∈π1(S) |πx(S)| =
∑

x∈π1(S) |V (Hx)| =∑
x∈π1(S) n = n

∑
x∈π1(S) 1 = n|π1(S)| = nMP(G). Hence S is an MP-set of G ∗ (Hx)x∈V by

Corollary 2.1.

Next, we characterize the MP-set of product graphs.

Corollary 2.3. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is left composed by Q. Further, let G,H ∈ U and let S be a nonempty subset
of V (G ∗H). Then S is an MP-set of G ∗H if and only if the following two conditions hold:

(1) π1(S) is an MP-set of G,
(2) πs(S) = V (H) for every s ∈ π1(S).

We not only obtain the MP-number of product graphs, but we can also enumerate the number
of MP-sets of product graphs in the term of the number of MQ-sets of its graph factors.
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Theorem 2.4. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗U such that P is left generalized composed by Q. Further, let G = (V,E),Hx ∈ U for every
x ∈ V . If |V (Hx)| = n for all x ∈ V where n is a positive integer , S is the family of MP-sets of
G ∗H , S1 is the family of MQ-sets of G, then

|S| = |S1|.

Proof. We construct an MP-set of G ∗H in 2 steps as follows.
Step 1 : Choose an MQ-set S1 from S1.
Step 2 : For each x ∈ S1, build the MP-set

⋃
x∈S1

({x} × V (Hx)) ∈ S.
By the multiplication law and by Corollary 2.3, |S| = S1|.

Corollary 2.4. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is left composed by Q. Further, let G,H ∈ U . If S is the family of MP-sets
of G ∗H and S1 is the family of MQ-sets of G, then

|S| = |S1|.

3. Right Generalized Composed Properties

In this section, we begin with the MP-number of generalized product of graphs where P is a
right generalized composed property.

Theorem 3.1. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is right generalized composed by Q. Further, let G = (V,E), Hx ∈ U for
every x ∈ V . We have

MP(G ∗ (Hx)x∈V ) =
∑
x∈V

MQ(Hx).

Proof. We first show that MP(G ∗ (Hx)x∈V ) ≤
∑

x∈V MQ(Hx). Let L be an MP-set of G ∗
(Hx)x∈V . By the definition of P , πx(L) is a Q-set of Hx for all x ∈ π1(L). We have |πx(L)| ≤
MQ(Hx) for all x ∈ π1(L). Thus MP(G ∗ (Hx)x∈V ) = |L| =

∣∣∣⋃x∈π1(L) ({x} × πx(L))
∣∣∣ =∑

x∈π1(L) |{x} × πx(L)| =
∑

x∈π1(L) |πx(L)| ≤
∑

x∈π1(L)MQ(Hx) ≤
∑

x∈V MQ(Hx).

Now, we show the rest that MP(G ∗ (Hx)x∈V ) ≥
∑

x∈V MQ(Hx). Let Lx be an MQ-set of Hx

for each x ∈ V . Further, let L′ =
⋃
x∈V ({x} × Lx). We note that |L′| =

∣∣∣⋃x∈V ({x} × Lx)
∣∣∣ =∑

x∈V |{x} × Lx| =
∑

x∈V |Lx| =
∑

x∈V MQ(Hx). By the definition of P , L′ is a P-set of
G ∗ (Hx)x∈V since πx(L′) = Lx is a Q-set of Hx for all x ∈ π1(L

′) = V . Therefore, MP(G ∗
(Hx)x∈V ) ≥ |L′| =

∑
x∈V MQ(Hx).

Hence MP(G ∗ (Hx)x∈V ) =
∑

x∈V MQ(Hx).

Corollary 3.1. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is right generalized composed by Q. Further, let G = (V,E),Hx ∈ U for all
x ∈ V . If MP(Hx) = n for all x ∈ V where n is a positive integer, then we have

MP(G ∗ (Hx)x∈V ) = n|V |.
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The next corollary is a direct application of Corollary 3.1.

Corollary 3.2. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is right composed by Q. Further, let G,H ∈ U . We have

MP(G ∗H) = |V (G)|MQ(H).

The following result shows a sufficient condition of a nonempty vertex set of generalized prod-
uct graphs to be an MP-set.

Theorem 3.2. For a property U , letQ be a property appearing in U and P a property appearing in
U ∗ U such that P is right generalized composed by Q. Further, let G = (V,E), Hx ∈ U for every
x ∈ V and let S be a nonempty subset of V (G ∗ (Hx)x∈V ). Then S is an MP-set of G ∗ (Hx)x∈V
if and only if the following conditions hold:

(1) π1(S) = V ,
(2) πs(S) is an MQ-set of Hs for every s ∈ π1(S).

Proof. Let Vx = V (Hx) for all x ∈ V .

The proof is by contraposition. Assume that (1) or (2) does not hold.
Case 1: π1(S) 6= V .

Let a ∈ V \π1(S) and La be a Q-set of Ha. Then
∣∣∣({a} × La) ∪ (⋃x∈π1(S)

(
{x} × πx(S)

))∣∣∣ =
|
(
{a} × La

)
∪ S| = |{a} × La| + |S| = |La| + |S| > |S| = MP(G ∗ (Hx)x∈V ). Therefore, S

is not an MP-set of G ∗ (Hx)x∈V since
(
{a} × La

)
∪
(⋃

x∈π1(S)
(
{x} × πx(S)

))
is a P-set of

G ∗ (Hx)x∈V .
Case 2: πa(S) is not an MQ-set of H for some a ∈ π1(S).

Let La be an MQ-set of Ha. Clearly, MQ(Ha) = |La| > |πa(S)|. Then∣∣∣(⋃x∈π1(S)\{a} ({x} × πx(S))
)
∪ ({a} × La)

∣∣∣ =
∣∣∣⋃x∈π1(S)\{a}({x} × πx(S))

∣∣∣ + |{a} × La| =∣∣∣⋃x∈π1(S)\{a}({x} × πx(S))
∣∣∣+ |La| > ∣∣∣(⋃x∈π1(S)\{a} ({x} × πx(S))

)∣∣∣+ |πa(S)| =∣∣∣(⋃x∈π1(S)\{a} ({x} × πx(S))
)∣∣∣ + | ({a} × πa(S)) | = ∣∣∣(⋃x∈π1(S)\{a}

(
{x} × πx(S)

))
∪
(
{a} ×

πa(S)
)∣∣∣ = ∣∣∣⋃x∈π1(S) ({x} × πx(S))

∣∣∣ = |S|.By the definition ofP ,
(⋃

x∈π1(S)\{a} ({x} × πx(S))
)
∪

({a} × La) is a P-set of G ∗ (Hx)x∈V . Therefore, S is not an MP-set of G ∗ (Hx)x∈V .

Next, we characterize the MP-set of product graphs.

Corollary 3.3. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗U such that P is right composed by Q. Further, let G,H ∈ U and let S be a nonempty subset
of V (G ∗H). Then S is an MP-set of G ∗H if and only if the following two conditions hold:

(1) π1(S) = V (H),
(2) πs(S) is an MQ-set of H for every s ∈ π1(S).
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We not only obtain the MP-number of product graphs, but we can also enumerate the number
of MP-sets of product graphs in the term of the number of MP-sets of its graph factors.

Theorem 3.3. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is right generalized composed by Q. Further, let G = (V,E),Hx ∈ U for
every x ∈ V . If S is the family of MP-sets of G ∗ (Hx)x∈V and Sx is the family of MQ-sets of Hx

for all x ∈ V , then
|S| =

∑
x∈V

|Sx|.

Proof. We construct an MP-set of G ∗H in 2 steps as follows.
Step 1 : For each x ∈ V , choose an MQ-set Sx from Sx.
Step 2 : Build the MP-set {x} × Sx ∈ S.
By the multiplication law and by Corollary 3.3, |S| =

∑
x∈V |Sx|.

Corollary 3.4. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is right composed by Q. Further, let G,H ∈ U . If S is the family of MP-sets
of G ∗H and S′ is the family of MQ-sets of H , then

|S| = |V (G)||S′|.

4. Generalized Composed Properties

In this section, we begin with the MP-number of generalized product of graphs where P is a
generalized composed property.

Theorem 4.1. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is generalized composed by Q. Further, let G = (V,E), Hx ∈ U for every
x ∈ V . We have

MP(G ∗ (Hx)x∈V ) = max

{∑
x∈S

MQ(Hx) : S is a Q-set of G

}
.

Proof. We first show that MP(G ∗ (Hx)x∈V ) ≤ max
{∑

x∈SMQ(Hx) : S is an Q-set of G
}

. Let
L be an MP-set of G ∗ (Hx)x∈V . By the definition of P , π1(L) is a Q-set of G and πx(L) is a
Q-set of Hx for all x ∈ π1(L). We have |πx(L)| ≤ MQ(Hx) for all x ∈ π1(L). Thus MP(G ∗
(Hx)x∈V ) = |L| =

∣∣∣⋃x∈π1(L) ({x} × πx(L))
∣∣∣ = ∑

x∈π1(L) |{x} × πx(L)| =
∑

x∈π1(L) |πx(L)| ≤∑
x∈π1(L)MQ(Hx) ≤ max

{∑
x∈SMQ(Hx) : S is a Q-set of G

}
.

Now, we show the rest that MP(G ∗ (Hx)x∈V ) ≥ max
{∑

x∈SMQ(Hx) : S is a Q-set of G
}

.
Let L be a Q-set of G and Lx be an MQ-set of Hx for each x ∈ L such that

∑
x∈LMQ(Hx) =

max
{∑

x∈SMQ(Hx) : S is a Q-set of G
}

. Further, let L′ =
⋃
x∈L ({x} × Lx). We note that

|L′| =
∣∣∣⋃x∈L ({x} × Lx)

∣∣∣ =∑x∈L |{x} × Lx| =
∑

x∈L |Mx| =
∑

x∈LMQ(Hx) =

max
{∑

x∈SMQ(Hx) : S is a Q-set of G
}
. By the definition of P , L′ is a P-set of G ∗ (Hx)x∈V
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since π1(L′) = L is a Q-set of G and πx(L′) = Lx is a Q-set of Hx for all x ∈ π1(L′). Therefore,
MP(G ∗ (Hx)x∈V ) ≥ |L′| = max

{∑
x∈SMQ(Hx) : S is a Q-set of G

}
.

Hence MP(G ∗ (Hx)x∈V ) = max
{∑

x∈SMQ(Hx) : S is a Q-set of G
}

.

Corollary 4.1. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗U such that P is generalized composed byQ. Further, letG = (V,E),Hx ∈ U for all x ∈ V .
If MP(Hx) = n for all x ∈ V where n is a positive integer, then we have

MP(G ∗ (Hx)x∈V ) = nMQ(G).

The next corollary is a direct application of Corollary 4.1.

Corollary 4.2. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is composed by Q. Further, let G,H ∈ U . We have

MP(G ∗H) =MQ(G)MQ(H).

The following result shows a necessary condition of a nonempty vertex set of generalized
product graphs to be an MP-set.

Theorem 4.2. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is generalized composed by Q. Further, let G = (V,E), Hx ∈ U for every
x ∈ V and let S be a nonempty subset of V (G ∗ (Hx)x∈V ). If S is an MP-set of G ∗ (Hx)x∈V , then
πs(S) is an MQ-set of Hs for every s ∈ π1(S).

Proof. The proof is by contraposition. Assume that πa(S) is not an MQ-set of H for some a ∈
π1(S). Let La be an MQ-set of Ha. Clearly, MQ(Ha) = |La| > |πa(S)|. Then∣∣∣(⋃x∈π1(S)\{a} ({x} × πx(S))

)
∪ ({a} × La)

∣∣∣ =
∣∣∣⋃x∈π1(S)\{a}({x} × πx(S))

∣∣∣ + |{a} × La| =∣∣∣⋃x∈π1(S)\{a}({x} × πx(S))
∣∣∣+ |La| > ∣∣∣(⋃x∈π1(S)\{a} ({x} × πx(S))

)∣∣∣+ |πa(S)| =∣∣∣(⋃x∈π1(S)\{a} ({x} × πx(S))
)∣∣∣ + | ({a} × πa(S)) | = ∣∣∣⋃x∈π1(S) ({x} × πx(S))

∣∣∣ = |S|. By the

definition of P ,
(⋃

x∈π1(S)\{a} ({x} × πx(S))
)
∪ ({a} × La) is a P-set ofG∗ (Hx)x∈V . Therefore,

S is not an MP-set of G ∗ (Hx)x∈V .

Theorem 4.3. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is generalized composed by Q. Further, let G = (V,E), Hx ∈ U for every
x ∈ V . If MQ(Hx) = n for all x ∈ V where n is a positive integer, then S is an MP-set of
G ∗ (Hx)x∈V if and only if the following conditions hold:

(1) π1(S) is an MQ-set of G,
(2) πs(S) is an MQ-set of Hs for every s ∈ π1(S).
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Proof. By Theorem 4.2, we need to show the rest that π1(S) is an MQ-set of G. By Corollary 4.1,
we have nMQ(G) = MP(G ∗ (Hx)x∈V ) = |S| =

∣∣∣⋃x∈π1(S) ({x} × πx(S))
∣∣∣ = ∑x∈π1(S) |{x} ×

πx(S)| =
∑

x∈π1(S) |πx(S)| =
∑

x∈π1(S) n = n
∑

x∈π1(S) 1 = n|π1(S)|. Consequently, MQ(G) =

|π1(S)|.

For the converse, we assume that (1) and (2) hold. By the definition of P , S is a P-set of
G ∗ (Hx)x∈V because π1(S) ∈ Q and πs(S) ∈ Q for every s ∈ π1(S). We see that |S| =∣∣∣⋃x∈π1(S) ({x} × πx(S))

∣∣∣ =∑x∈π1(S) |{x} × πx(S)| =
∑

x∈π1(S) |πx(S)| =
∑

x∈π1(S) n =

n
∑

x∈π1(S) 1 = n|π1(S)|. Hence S is an MP-set of G ∗ (Hx)x∈V by Corollary 4.1.

Next, we characterize the MP-set of product graphs.

Corollary 4.3. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is composed by Q. Further, let G,H ∈ U and let S be a nonempty subset of
V (G ∗H). Then S is an MP-set of G ∗H if and only if the following two conditions hold:

(1) π1(S) is an MQ-set of G,
(2) πs(S) is an MQ-set of H for every s ∈ π1(S).

We not only obtain the MP-number of product graphs, but we can also enumerate the number
of MP-sets of product graphs in the term of the number of MQ-sets of its graph factors.

Theorem 4.4. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is generalized composed by Q. Further, let G = (V,E),Hx ∈ U for every
x ∈ V . If MQ(Hx) = n for all x ∈ V where n is a positive integer , S is the family of MP-sets of
G ∗H , S1 is the family of MQ-sets of G and Sx is the family of MQ-sets of Hx for all x ∈ V , then

|S| =
∑
S1∈S1

∏
x∈S1

|Sx|.

Proof. We construct an MP-set of G ∗H in 3 steps as follows.
Step 1 : Choose an MQ-set S1 from S1.
Step 2 : For each x ∈ S1, choose an MQ-set Sx from S2.
Step 3 : Build the MP-set

⋃
x∈S1

({x} × Sx) ∈ S.
By the multiplication law and by Corollary 4.3, |S| =

∑
S1∈S1

∏
x∈S1
|Sx|.

Corollary 4.4. For a property U , let Q be a property appearing in U and P a property appearing
in U ∗ U such that P is composed by Q. Further, let G,H ∈ U . If S is the family of MP-sets of
G ∗H , S1 is the family of MQ-sets of G and S2 is the family of MQ-sets of H , then

|S| = |S1||S2|MQ(G).
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5. Conclusion

For convenience in this section, we denote ”composed by” and ”generalized composed by” by
”CB” and ”GCB”, respectively. We summarize corresponding results for the mP(G ∗H) and the
mP(G ∗ (Hx)x∈V ) as follows.

For a property U , let Q be a property appearing in U and P a property appearing in U ∗ U . Let
G = (V,E), Hx ∈ U for every x ∈ V . We have

mP(G ∗ (Hx)x∈V ) =


mP(G) , if P is left GCB Q;

min
{∑

x∈SmQ(Hx) : S is a subset of V
}

, if P is right GCB Q;

min
{∑

x∈SmQ(Hx) : S is a P-set of G
}

, if P is GCB Q.

Further, let G,H ∈ U . We have

mP(G ∗H) =


mP(G) , if P is left CB Q;

mQ(H) , if P is right CB Q;

mP(G)mQ(H) , if P is CB Q.

Next, we give two tables showing some specific results for composed and generalized com-
posed properties obtained by applying our results in Sections 2, 3 and 4.
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