On (a,d)-antimagic labelings of Hn, FLn and mCn

Ramalakshmi Rajendran, K. M. Kathiresan

Abstract


In this paper, we derive the necessary condition for an (a,d )- antimagic labeling of some new classes of graphs such as Hn, F Lnand mCn. We prove that Hnis (7n +2, 1)-antimagic and mCnis ((mn+3)/2,1)- antimagic. Also we prove that F Lnhas no ((n+1)/2,4)- antimagic labeling.

Keywords


antimagic labeling, (a, d)-antimagic labeling.

Full Text:

PDF

DOI: http://dx.doi.org/10.19184/ijc.2020.4.2.3

References

M.Baca, Antimagic labelings of antiprisms, J. Comb. Math. Comb. Comput. 35 (2000), 117–127.

M.Baca and I.Hollander, On (a,d)-antimagic prisms, Ars.Combin. 48 (1998), 297–306.

M.Baca and M.Miller, Antimagic valuations of generalized Peterson graphs, Australas. J. Combin. 22 (2000), 135–139.

M.Baca and M.Miller, Super Edge-Antimagic Graphs : A Wealth of Problems and Some Solutions, Universal Publishers, 2008.

R.Bodendiek and G.Walther, On (a,d)-antimagic parachutes, Ars.Combin. 42 (1996), 129–149.

N.Hartsfield and G.Ringel, Pearls in Graph Theory, Academic Press, Botson-san diego-New York, Londan, 1990.

KM.Kathiresan and K.Paramasivam, Super magic strength of some new classes of graphs, ANJAC J.Sci. 1 (2)(2002), 5–10.


Refbacks

  • There are currently no refbacks.


ISSN: 2541-2205

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View IJC Stats