On Super (a,d)-edge antimagic total labeling of branched-prism graph

Khairannisa Al Azizu, Lyra Yulianti, Narwen Narwen, Syafrizal Sy


Let H be a branched-prism graph, denoted by H = (Cm x P2) ⊙ Ǩn for odd m, m ≥ 3 and n ≥ 1. This paper considers about the existence of the super (a,d)-edge antimagic total labeling of H, for some positive integer a and some non-negative integer d.


super (a,d)-edge antimagic total labeling; branched-prism graph

Full Text:


DOI: http://dx.doi.org/10.19184/ijc.2021.5.1.2


K.A. Azizu, L. Yulianti, S. Sy, N. Narwen, On super edge magic total labeling of the branched-prism graph. International Journal of Progressive Sciences and Technologies 16 (2) (2019), 203 -- 206.

M. Baca, M. Miller, Super Edge-Antimagic Graphs: A Wealth of Problems and Some Solutions. Brown Walker Press (2008).

R. Bodendiek, G. Walther, Arithmetisch Antimagische Graphen. In: K. Wagner and R. Bodendiek, eds. Graphentheorie III, BI-Wiss Verl., Mannheim (1993).

J. A. Gallian, A Dynamic survey of graph labeling. Electron. J. Combin. (2020), #DS6.

N. Hartsfield, G. Ringel, Pearls in Graph Theory. Academic Press. Boston (1990).

R. Simanjuntak, M. Miller, F. Bertault, Two new (a,d)-antimagic graph labeling. Proc. of the Eleventh Australasian Workshop on Combinatorial Algorithms, (2000), 179 -- 189.

K.A. Sugeng, Super edge antimagic total labeling, Util. Math. 71 (2006), 131 -- 141.

W.D. Wallis, Magic Graphs. Birkhauser, Boston (2001).


  • There are currently no refbacks.

ISSN: 2541-2205

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View IJC Stats