Total edge irregularity strength of some cycle related graphs
Abstract
An edge irregular total k-labeling f : V ∪ E → 1,2, ..., k of a graph G = (V,E) is a labeling of vertices and edges of G in such a way that for any two different edges uv and u'v', their weights f(u)+f(uv)+f(v) and f(u')+f(u'v')+f(v') are distinct. The total edge irregularity strength tes(G) is defined as the minimum k for which the graph G has an edge irregular total k-labeling. In this paper, we determine the total edge irregularity strength of new classes of graphs Cm @ Cn, Pm,n* and Cm,n* and hence we extend the validity of the conjecture tes(G) = max {⌈|E(G)|+2)/3⌉, ⌈(Δ(G)+1)/2⌉} for some more graphs.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.19184/ijc.2021.5.1.3
References
A. Ahmad and M. Baca, Edge irregular total labeling of certain family of graphs, AKCE J. Graphs Combin., 6, No.1 (2009) 21-29.
A. Ahmad, M. Baca and M.K. Siddiqui, Irregular total labeling of disjoint union of prisms and cycles, Australas J.Combin., 6, No.59 (1) (2009) 98-106.
M. Baca, S. Jendrol, M. Miller, J. Ryan, On irregular total labeling, Discrete Math., 307(2007) 1378-1388.
J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics (2018), #DS6.
R. Indra and T.A. Santiago, Total edge irregularity strength of generalised uniform theta graph, International Journal of Scientific research, 7(2018) 41-43.
J. Ivanco and S. Jendrol, Total edge irregularity strength for trees, Discuss. Math. Graph Theory 26(2006) 449-456.
S. Jendrol, J. Miskuf, R. Sotak, Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Math., 310(2010) 400-407.
P. Jeyanthi and A. Sudha, Total edge irregularity strength of disjoint union of double wheel graphs,Proyecciones J.Math., 35(2016) 251-262.
P. Jeyanthi and A. Sudha, On total edge irregularity strength of some graphs, Bulletin of the international mathematical virtual institute, 9(2019) 393-401.
KM. Kathiresan and R. Ramalakshmi, Total edge irregularity strength for three clases of graphs, Util.Math., 102(2017) 321-329.
S. Nurdin, A.N.M. Salman, E.T. Baskoro, The total edge-irregular strengths of the corona product of paths with some graphs, J.Combin.Math.Combin.Comput., 65 (2008) 163-175.
M.K. Siddiqui, On total edge irregularity strength of categorical product of cycle and path, AKCE J. Graphs. Combin., 9, No.1(2012) 43-52.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.