Randomness of encryption keys generated by super H-antimagic total labeling
Abstract
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.19184/ijc.2020.4.1.3
References
P.M. Alcover, A. Guillamon, M.C. Ruiz, A New Randomness Test for Bit Sequence, Informatica, 24(3), (2013), 339-356
M. Baca, L. Brankovic, M. Lascsakova, O., Phanalasy, A. Semaniˇcov´a-Feˇnovˇc´ıkov´a, On d-antimagic labelings of plane graphs, Electr. J. Graph Theory Appli., 1(1), (2013), 28-39
Dafik, A.K. Purnapraja, R Hidayat, Cycle-Super Antimagicness of Connected and Disconnected Tensor Product of Graphs, Procedia Computer Science, 74, (2015), 93-99
Dafik, Slamin, D. Tanna, A. Semaniˇcov´a-Feˇnovˇc´ıkov´a, M. Baˇca, Constructions of Hantimagic graphs using smaller edge-antimagic graphs, Ars Combinatoria, 100 (2017), In Press
Dafik, M. Hasan, Y.N. Azizah, I. H. Agustin, A Generalized Shackle of Any Graph H Admits a Super H-Antimagic Total Labeling, Mathematics in Computer Science Journal, (2016). Submitted
P. L’Ecuyer, Testing Random number Generators, Proceedings of the 1992 Winter Simulation Conference, IEEE Press, Dec. (1992), 305-313.
A.C. Prihandoko, Dafik, I.H. Agustin, D. Susanto, A.I. Kristiana, Slamin, The Construction of Encryption Key by Using a Super H-antimagic Total Graph, Program and Abstract the Asian Mathematical Conference, AMC (2016), 408, ISBN 978-602-74668-0-7.
A.C. Prihandoko, Dafik, I.H. Agustin, Implementation of Super H-Antimagic Total Graph on Establishing Stream Cipher, Indonesian Journal of Combinatorics, 3(1), 2019, pp. 14-23.
M.E. Whitman, H.J. Mattord, Principles of Information Security, (2012), Boston: Course Technology
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.