The total disjoint irregularity strength of some certain graphs

Meilin I Tilukay, A. N. M. Salman

Abstract


Under a totally irregular total k-labeling of a graph G = (V,E), we found that for some certain graphs, the edge-weight set W(E) and the vertex-weight set W(V) of G which are induced by k = ts(G), W(E) ∩ W(V) is a non empty set. For which k, a graph G has a totally irregular total labeling if W(E) ∩ W(V) = ∅? We introduce the total disjoint irregularity strength, denoted by ds(G), as the minimum value k where this condition satisfied. We provide the lower bound of ds(G) and determine the total disjoint irregularity strength of cycles, paths, stars, and complete graphs.


Keywords


total disjoint irregularity strength; total irregularity strength; irregular total labeling

Full Text:

PDF

DOI: http://dx.doi.org/10.19184/ijc.2020.4.2.2

References

A. Achmad, M. Ibrahim, and M.K. Siddiqui, On the total irregularity strength of generalized Petersen graph, Math. Reports. 18 (68) (2016), 197–204.

M. Baˇ ca, S. Jendrol’, M. Miller, and J. Ryan, On irregular total labelings, Discrete Math. 307 (2007), 1378–1388.

J.A. Galian, A dynamic survey of graph labeling, Electron. J. Comb. 18 (2015), ] DS6.

D. Indriati, Widodo, I.E. Wijayanti, and K.A. Sugeng, On the total irregularity strength of double-star and related graphs, Procedia Comput. Sci. 74 (2015), 118–123.

D. Indriati, Widodo, I.E. Wijayanti, and K.A. Sugeng, On the total irregularity strength of star graphs, double-stars and caterpillar, AIP Conf. Proc. 1707 (2016), 020008-1–020008-6.

J. Ivanˇ co and S. Jendro ˇ l, Total edge irregularity strength of trees, Discuss. Math. Graph Theory. 26 (2006), 449–456.

S. Jendro ˇ l, J. Miskuf, and R. Sotˇ ak, Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Math. 310 (2010), 400–407.

C.C. Marzuki, A.N.M. Salman, and M. Miller, On the total irregularity strengths of cycles and paths, Far East J. Math. Sci. 82(1) (2013), 1–21.

Nurdin, E.T. Baskoro, A.N.M. Salman, and N.N. Gaos, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010), 3043–3048.

R. Ramdani, and A.N.M. Salman, On the total irregularity strength of some cartesian product graphs, AKCE Int. J. Graphs Comb. 10 2013, 199–209.

R. Ramdani, A.N.M. Salman, and H. Assiyatun, On the total irregularity strength of regular graphs, J. Math. Fund. Sci. 47(3) (2015), 281–295.

R.Ramdani, A.N.M.Salman, H.Assiyatun, A.Semaniˇ covˇ a-Feˇ novˇ cikovˇ a, andM.Baˇ ca, Total irregularity strength of three families of graphs, Math. Comput. Sci. 9 (2015), 229–237.

M. Tilukay, A.N.M. Salman, and E.R. Persulessy, On the total irregularity strength of fan, wheel, triangular book, and friendship graphs, Procedia Comput. Sci. 74 (2015), 124–131.

M. Tilukay, B.P. Tomasouw, F.Y. Rumlawang, and A.N.M. Salman, The total irregularity strength of complete graphs and complete bipartite graphs, Far East J. Math. Sci. 102(2) (2017), 317–327.


Refbacks

  • There are currently no refbacks.


ISSN: 2541-2205

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View IJC Stats