All unicyclic graphs of order n with locating-chromatic number n-3
Abstract
Characterizing all graphs having a certain locating-chromatic number is not an easy task. In this paper, we are going to pay attention on finding all unicyclic graphs of order n (⩾ 6) and having locating-chromatic number n-3.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.19184/ijc.2021.5.2.3
References
Arfin and E.T. Baskoro, Unicyclic graph of order n with locating-chromatic number n-2, Jurnal Matematika dan Sains 24 (2019), 36--45
Asmiati and E.T. Baskoro, Characterizing all graphs containing cycles with locating-chromatic number 3, AIP Conf. Proc. 1450 (2012), 351--357
H. Assiyatun, D.K. Syofyan and E.T. Baskoro, Calculating an upper bound of the locating-chromatic number of trees, Theor. Comput. Sci. 806 (2020), 305--309
E.T. Baskoro and Asmiati, Characterizing all trees with locating-chromatic number 3, Electron. J. Graph Theory Appl. 1 (2) (2013), 109--117
G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater and P. Zhang, The locating-chromatic number of a graph, Bull. Inst. Combin. Appl. 36 (2002), 89--101
G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater and P. Zhang, Graph of order n with locating-chromatic number n-1, Discrete Math. 269 (2003), 65--79
M. Dudenko and O. Bogdana, On unicyclic graph of metric dimension 2, Algebra and Discrete Math. 23 (2017), 216--222
M. Furuya and N. Matsumoto, Upper bounds on the locating-chromatic number of trees, Discrete Appl. Math. 257 (2019), 338--341
D.K. Syofyan, E.T. Baskoro and H. Assiyatun, Trees with certain locating-chromatic number, J. Math. Fund. Sci. 48 (1) (2016), 39--47
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.