On Ramsey (mK2,bPn)-minimal Graphs
Abstract
Let G and H be two given graphs. The notation F→(G,H) means that any red-blue coloring on the edges of F will create either a red subgraph G or a blue subgraph H in F. A graph F is a Ramsey (G,H)-minimal graph if F satisfies two conditions: (1) F→(G,H), and (2) (F−e) ⇸ (G,H) for every e ∈ E(F). Denote ℜ(G,H) as the set of all (G,H)-minimal graphs. In this paper we prove that a tree T is not in ℜ(mK2,bPn) if it has a diameter of at least n(b+m−1)−1 for m,n,b≥2, furthermore we show that (b+m−1)Pn ∈ ℜ(mK2,bPn) for every m,n,b≥2. We also prove that for n≥3, a cycle on k vertices is in ℜ(mK2,bPn) if and only if k ∈ [n(b+m−2)+1, n(b+m−1)−1].
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.19184/ijc.2023.7.1.2
References
E.T. Baskoro and L. Yulianti, On Ramsey minimal graphs for 2K2 versus Pn, Adv. Appl. Discrete Math., 8(2) (2011): 83-90.
E.T. Baskoro and K. Wijaya, On Ramsey(2K2, K4)-minimal graphs, Mathematics in the 21st Century, Springer PRoc. Math. Stat., 98 (2015): 11-17
S.A. Burr, P. Erdos, R.J. Faudree, C.C. Rousseau, and R.H. Schelp, Ramsey minimal graphs for forests. Discrete Math., 38(1) (1982): 23-32
S.A. Burr, P. Erdos, R.J. Faudree, and R.H. Schelp, A class of Ramsey-finite graphs, Proc 9th Southeastern Conf. Comb. Graph Theory Comput., (1978):171-180. Boca Raton.
I. Mengersen, and J. Oeckermann, Matching-star Ramsey Sets, Discrete Appl. Math., 95 (1999): 417-424.
H. Muhshi and E.T. Baskoro, On Ramsey (3K2,P3)-minimal graphs, AIP Conf. Proc., 1450 (2011): 110-117.
K. Wijaya, E.T. Baskoro, H. Assiyatun, and D. Suprijanto, On Ramsey (mK2,H)-minimal graphs, Graphs Comb., 23 (2017): 233-243.
K. Wijaya, E.T. Baskoro, H. Assiyatun, and D. Suprijanto, The complete list of Ramsey (2K2,K4)-minimal graphs, Electron. J. Graph Theory Appl.. 3(2) (2015): 216-227.
K. Wijaya, E.T. Baskoro, H. Assiyatun, and D. Suprijanto, On Uncyclic Ramsey (mK2,P3)-minimal graphs, Proc. Comput. Sci., 74, (2015): 10-14.
L. Yulianti, H. Assiyatun, S. Utunggadewa, and E.T. Baskoro, On Ramsey (K1,2,P4)-minimal graphs, Far East J. Math. Sci., 40(1) (2010): 23-26.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.