The total vertex irregularity strength of symmetric cubic graphs of the Foster's Census

Rika Yanti, Gregory Benedict Tanidi, Suhadi Wido Saputro, Edy Tri Baskoro

Abstract


Foster (1932) performed a mathematical census for all connected symmetric cubic (trivalent) graphs of order n with ≤ 512. This census then was continued by Conder et al. (2006) and they obtained the complete list of all connected symmetric cubic graphs with order n ≤ 768. In this paper, we determine the total vertex irregularity strength of such graphs obtained by Foster. As a result, all the values of the total vertex irregularity strengths of the symmetric cubic graphs of order n from Foster census strengthen the conjecture stated by Nurdin, Baskoro, Gaos & Salman (2010), namely ⌈(n+3)/4⌉.


Keywords


symmetric cubic graphs, total vertex irregularity strength, algorithms, Foster's census

Full Text:

PDF

DOI: http://dx.doi.org/10.19184/ijc.2022.6.2.3

References

M. Bača, S. Jendrol', M. Miller, J. Ryan, On Irregular Total Labellings, Discrete Math., 307 (2005), 1378--1388.

I. Z. Bouwer, W.W. Chernoff, B. Monson, and Z. Star, The Foster Census, Charles Babbage Research Centre, (1988).

G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz, F. Saba, Irregular Networks, Congr. Numer., 64 (1988), 187--192.

M. Conder, P. Dobcsányi, Trivalent Symmetric Graphs Up to 768 Vertices, J. Combin. Math. Combin. Comput., 40 (2002), 41-63.

M. Conder, Trivalent (cubic) Symmetric Graphs on Up to 2048 Vertices, http://www.math.auckland.ac.nz/~conder/symmcubic2048list.txt.

D. A. Holton, J. Sheehan, The Petersen graph, Cambridge University Press, (1993).

Nurdin, E.T. Baskoro, N.N. Gaos, A.N.M. Salman, On the Total Vertex Irregularity Strength of Trees, Discrete Math., 310 (2010), 3043--3048.

Rikayanti and E.T. Baskoro, Algorithms of Computing the Total Vertex Irregularity Strength of Some Cubic Graphs, Int. J. Math. Comput. Sci., 16(3) (2021), 897-905.

S. Jendrol, V. Zoldak, The Irregularity Strength of Generalized Petersen Graphs, Math. Slovaca, 45 (1995), 107--113.

D.R. Silaban, E.T. Baskoro, H. Kekaleniate, S. Lutpiah, K.A. Sugeng, Algorithm to Construct Graph with Total Vertex Irregularity Strength Two, Procedia Comput. Sci., 74 (2015), 132--137.

R. Ramdani, A.N.M. Salman, H. Assiyatun, On the Total Irregularity Strength of Regular Graphs, J. Math. Fund. Sci., 47 (2015), 281--295.

Susilawati, E.T. Baskoro, R. Simanjuntak, Total Vertex-irregularity Labelings for Subdivision of Several Classes of Trees, Procedia Comput. Sci., 74 (2015), 112--117.

Susilawati, E.T. Baskoro, R. Simanjuntak, Total vertex irregularity strength of trees with maximum degree five, Electron. J. Graph Theory Appl., 6 (2) (2018), 250--257.

Royle. G, Cubic Symmetric Graphs (The Foster Census), http://school.maths.uwa.edu.au/~gordon/remote/foster/#census.


Refbacks

  • There are currently no refbacks.


ISSN: 2541-2205

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View IJC Stats