On the metric dimension of Buckminsterfullerene-net graph

Lyra Yulianti, Des Welyyanti, Yanita Yanita, Muhammad Rafif Fajri, Suhadi Wido Saputro

Abstract


The metric dimension of an arbitrary connected graph G, denoted by dim(G), is the minimum cardinality of the resolving set W of G. An ordered set W = {w1, w2,..., wk} is a resolving set of G if for all two different vertices in G, their metric representations are different with respect to W. The metric representation of a vertex v with respect to W is defined as k-tuple r(v|W) = (d(v,w1), d(v,w2),..., d(v,wk)), where d(v,wj) is the distance between v and wj for 1 ≤ jk. The Buckminsterfullerene graph is a 3-reguler graph on 60 vertices containing some cycles C5 and C6. Let B60t denotes the tth  B60 for 1 ≤ tm and m ≥ 2. Let vt be a terminal vertex for each B60t. The Buckminsterfullerene-net, denoted by H:=Amal{B60t,v| 1 ≤ tm; m ≥ 2} is a graph constructed from the identification of all terminal vertices vt, for 1 ≤ tm and m ≥ 2, into a new vertex, denoted by v. This paper will determine the metric dimension of the Buckminsterfullerene-net graph H.

Keywords


Buckminsterfullerene; amalgamation; Buckminsterfullerene-net; metric dimension

Full Text:

PDF

DOI: http://dx.doi.org/10.19184/ijc.2023.7.2.2

References

S. Akhter and R. Farooq, Metric Dimension of Fullerene Graph, Electron. J. Graph Theory Appl., 7(1), (2019), 91 -- 103.

V. Andova, F. Kardos, and R. Skrekovsi, Fullerene Graphs and Some Relevant Graphs Invariant, in: Topics in Chemical Graph Theory, University of Kragujevac and Faculty of Science, Kragujevac, (2014), 39 -- 54, Mathematical Chemistry Monographs, 978-86-6009-027-2.

M. Baĉa, E.T. Baskoro, A.N.M. Salman, S.W. Saputro, and D. Suprijanto, The Metric Dimension of Regular Bipartite Graphs, Bull. Math. Soc. Sci. Math. Roumanie Tome, 54(102) No 1 (2011), 15 -- 28.

J. Caceres, C. Hernando, M. Mora, I. Pelayo, M. Puertas, and C. Seara, On the metric dimension of some families of graphs, Electron. Notes Discrete Math., 22 (2005), 129 -- 133.

G. Chartrand, L. Eroh, M. Johnson, and O. Oellerman, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99 -- 113.

R. Diestel, Graph Theory, 5th ed., Springer-Verlag New York Inc., New York, (2017)

H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985), 162 -- 163.

C. Poisson, and P. Zhang, The metric dimension of unicyclic graphs, J. Combin. Math. Comb. Comput., 40 (2002), 17 -- 32.

A.H. Putri, L. Yulianti, and D. Welyyanti, Dimensi Metrik dari graf Buckminsterfullerene (in Bahasa), Jurnal Matematika UNAND, 8(4) (2019), 93 -- 102.

S.W. Saputro, E.T. Baskoro, A.N.M. Salman, and D. Suprijanto, The metric dimension of a complete n-partite graphs and its Cartesian product with a path, J. Combin. Math. Comb. Comput., 71 (2009), 283 -- 293.

S.W. Saputro, R. Simanjuntak, S. Uttunggadewa, H. Assiyatun, E.T. Baskoro, A.N.M. Salman, and M. Baĉa, (2013), The metric dimension of the lexicographic product of graphs, Discrete Math., 313(9) (2013), 1045 -- 1051.

B. Shanmukha, B. Sooryanarayana, and K.S. Harinath, Metric dimension of wheels, Far East J. Appl. Math., 8(3) (2002), 217 -- 229.

R. Simanjuntak, S. Uttunggadewa, and S.W. Saputro, Metric Dimension of Amalgamation of Graphs, Lect. Notes Comput. Sci., (LNCS), 8986 (2015), 330 -- 337.

B. Sooryanarayana, S. Kunikullaya, and N.N. Swamy, Metric dimension of generalized wheels, Arab J. Math. Sci., 25(2) (2019), 131 -- 144.

I. Tomescu and I. Javaid, On the metric dimension of the Jahangir graph, Bull. Math. Soc. Sci. Math. Roumanie Tome, 50(98), No 4 (2007), 371 -- 376.

L. Yulianti, N. Narwen, and S. Hariyani, A note on the metric dimension of subdivided thorn graphs, Indones. J. Combin., 3(1) (2019), 34 -- 40.

L. Yulianti, A. Putri, B. Rudianto, Y. Yanita, and D. Welyyanti, On the metric dimension of the triangle-net graph, AIP Conf. Proc., (2022), accepted.


Refbacks

  • There are currently no refbacks.


ISSN: 2541-2205

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View IJC Stats