Reflexive Edge Strength on Slanting Ladder Graph and Corona of Centipede and Null Graph

Mochamad Raffli Ispriyanto, Diari Indriati, Putranto Hadi Utomo

Abstract


Assume G is a graph that is simple, undirected, and connected. If every edge label is a positive integer in the range 1 to ke, and every vertex label is a non-negative even number from 0 to 2kv, then a graph G is considered to have an edge irregular reflexive k-labeling, where k is defined as the maximum of ke and 2kv. The edge weight wt(ab) in the graph G, for the labeling λ, is defined as the function wt applied to the edge ab. The symbol res(G) denotes the reflexive edge strength, which is the largest label of the smallest k. The results of this research are as follows: res(SLm) for m≥2 is ⌈(3m−3)/3⌉ for 3m−3 ≢ 2, 3 (mod 6), and ⌈(3m−3)/3⌉+1 for 3m−3 ≡ 2, 3 (mod 6). res(CpnNm) for n≥2, m≥1 is ⌈(2nm+2n−1)/3⌉ for 2nm+2n−1 ≢ 2, 3 (mod 6), and ⌈(2nm+2n−1)/3⌉+1 for 2nm+2n−1 ≡ 2, 3 (mod 6).

Keywords


Reflexive edge strength, slanting ladder graph, corona of centipede and null graph

Full Text:

PDF

DOI: http://dx.doi.org/10.19184/ijc.2024.8.2.3

References

D. Indriati, Widodo, and I. Rosyid, Edge Irregular Reflexive Labeling on Corona of Path and Other Graph, J. Phys. Conf. Ser., (2020).

G. Chartrand and L. Lesniak, Graphs and Digraphs, 2nd ed., Wadsworth Inc., California (1986).

Kusbudiono, C.H. Pratiwi, and K. Wijaya, On Distance Irregularity Strength of Lollipop, Centipede, and Tadpole Graphs, Proc. Internat. Conf. Math. Islam (ICMIs 2018), (2018), 233-235.

M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, and D. Tanna, Note on Edge Irregular Reflexive Labelings of Graphs, AKCE Internat. J. Graph Comb., 16 (2019), 145-15.

M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, and D. Tanna, On Edge Irregular Reflexive Labellings for the Generalized Friendship Graphs, Mathematics, 67 (2017), 1-11.

M. Bača, S. Jendrol’, M. Miller, and J. Ryan, On Irregular Total Labeling, Discrete Math., 307 (2007), 1378-1388.

N.A. Rahmawati and D. Indriati, Edge Irregular Reflexive Labeling on Umbrella Graph U3,n and U4,n, AIP Conf. Ser., 2326 (2021), 1-6.

N.S.B. Budi, D. Indriati, and B. Winarno, Edge Irregular Reflexive Labeling on Tadpole Graph Tm,1 and Tm,2, AIP Conf. Ser., 2326 (2021), 1-5.

P. Sumathi and A. Rathi, Quotient Labeling of Some Ladder Graphs, Am. J. Engrg. Res. (AJER), (2018), 38-42.

R. Frucht and F. Harary, On The Corona of Two Graphs, Aequations Math., 4 (1970), 322-325.

W.D. Wallis, Magic Graphs, Birkhäuser, Basel, Berlin, (2001).


Refbacks

  • There are currently no refbacks.


ISSN: 2541-2205

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View IJC Stats