On the generating graph of a finite group
Abstract
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.19184/ijc.2024.8.1.3
References
E. Bertram, M. Herzog, and A. Mann, On a graph related to conjugacy classes of groups, Bulletin of the London Mathematical Society, 22(6), (1990), 569–575.
T. Breuer, R. Guralnick, and W. Kantor, Probabilistic generation of finite simple groups, II Journal of Algebra, 320(2), (2008), 443–494.
A. Erfanian and B. Tolue, Conjugate graphs of finite groups, Discrete Mathematics, Algorithms and Applications, 4(2) (2012), 1250035.
B. Esther, Probability of generating a dicyclic group using two elements Pi Mu Epsilon Journal, 14(3), (2015), 165–168.
M. W. Liebeck and A. Shalev, Simple groups, probabilistic methods, and a conjecture of Kantor and Lubotzky, J. Algebra, 184 (1996), 31–57.
K. L. Patti, The probability of randomly generating a finite group Pi Mu Epsilon Journal, 11 (6), (2002), 313–316.
H. Tong-Viet, Finite groups whose prime graphs are regular, Journal of Algebra, 397 (2014), 18–31.
R. J. Wilson, Introduction to graph theory, Pearson Education India, (1979).
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.