Further Results on Locating Chromatic Number for Amalgamation of Stars Linking by One Path

A. Asmiati, Lyra Yulianti, C. Ike Tri Widyastuti

Abstract


Let G = (V,E) be a connected graph. Let c be a proper coloring using k colors, namely 1, 2,·s, k. Let P={S1, S2,..., Sk} be a partition of V(G) induced by c and let Si be the color class that receives the color i. The color code, cP(v)=(d(v,S1), d(v,S2),...,d(v,Sk)), where d(v,Si)=min {d(v,x)|x Î Si} for i Î [1,k]. If all vertices in V(G) have different color codes, then c is called as the \emphlocating-chromatic k-coloring of G. Minimum k such that G has the locating-chromatic k-coloring is called the locating-chromatic number, denoted by cL(G). In this paper, we discuss the locating-chromatic number for n certain amalgamation of stars linking a path, denoted by nSk,m, for n ≥ 1, m ≥ 2, k ≥ 3, and k>m.

Keywords


locating chromatic number, amalgamation of stars

Full Text:

PDF

References


Asmiati, H. Assiyatun, E.T. Baskoro, Locating-Chromatic Number of Amalgamation of Stars, ITB J.Sci. 43A (2011), 1-8.

Asmiati, H. Assiyatun, E.T. Baskoro, D. Suprijanto, R. Simanjuntak, S. Uttunggadewa, Locating-Chromatic Number of Firecracker Graphs, Far East Journal of Mathematical Sciences 63(1) (2012), 11-23.

Asmiati, E.T. Baskoro, Characterizing of Graphs Containing Cycle with Locating-Chromatic Number Three, AIP Conf. Proc. 1450 (2012), 351-357.

Asmiati, Locating-Chromatic Number of Non Homogeneous Amalgamation of Stars, Far East Journal of Mathematical Sciences 93(1) (2014), 89-96.

Asmiati, Locating-chromatic number of banana tree, International Mathematical Forum, 12(1) (2017), 39-45.

Asmiati, Bilangan kromatik lokasi n amalgamasi bintang yang dihubungkan oleh suatu lintasan, Jurnal Matematika Integratif 13(2) (2017), 115-121.

E.T. Baskoro, Asmiati, Characterizing all Trees with Locating-Chromatic Number 3, Electronic Journal of Graph Theory and Applications 1(2)} (2013), 109-117.

E.T. Baskoro, I. A. Purwasih, The Locating-Chromatic Number for Corona Product of Graphs, Southeast-Asian J. of Sciences 1(1) (2012), 126 -- 136.

G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zang, The Locating-Chromatic Number of a Graph, Bulls. Inst. Combin. Appl. 36 (2002), 89 -- 101.

G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zang, Graph of Order $n$ with Locating-Chromatic Number $n-1$, Discrete Mathematics 269 (2003), 65-79.

G. Chartrand, P. Zhang, E. Salehi, On the Partition Dimension of Graph, Congr. Numer. 130 (1998), 157-168.




DOI: http://dx.doi.org/10.19184/ijc.2018.2.1.6

Refbacks

  • There are currently no refbacks.


ISSN: 2541-2205

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View IJC Stats