On the local metric dimension of t-fold wheel, Pn o Km, and generalized fan

Rokhana Ayu Solekhah, Tri Atmojo Kusmayadi

Abstract


Let G be a connected graph and let u, vV(G). For an ordered set W = {w1, w2, ..., wn} of n distinct vertices in G, the representation of a vertex v of G with respect to W is the n-vector r(vW) = (d(v, w1), d(v, w2), ..., d(v, wn)), where d(v, wi) is the distance between v and wi for 1 ≤ in. The set W is a local metric set of G if r(uW) ≠ r(vW) for every pair u, v of adjacent vertices of G. The local metric set of G with minimum cardinality is called a local metric basis for G and its cardinality is called a local metric dimension, denoted by lmd(G). In this paper we determine the local metric dimension of a t-fold wheel graph, PnKm graph, and generalized fan graph.


Full Text:

PDF

DOI: http://dx.doi.org/10.19184/ijc.2018.2.2.4

References

Intaja, S. and T. Sitthiwarttham, Some Graph Parameters of Fan Graph, International Journal of Pure and Applied Mathematics 80 (2) (2012), 217-223.

Ningsih, E. U. S., N. Estuningsih, dan L. Susilowati, Dimensi Metrik Lokal pada Graf Hasil Kali Comb dari Graf Siklus dan Graf Lintasan}, Jurnal Matematika 1 (2014), 24-33.

Kristina, M., N. Estuningsih, and L. Susilowati, Dimensi Metrik Lokal pada Graf Hasil Kali Comb dari Graf Siklus dan Graf Bintang, Universitas Airlangga (2014), 1-9.

Rimadhany, R., Dimensi Metrik Lokal dari Graf Circulant, Institut Teknologi Sepuluh November (2017), 1-92.

Rodriguez-Velazquez, J. A., G. A. Barragan-Ramirez, and C. G. Gomez, On The Local Metric Dimension of Corona Product Graphs, Bull. Malays. Math. Sci. Soc. 39 (2016), 157-173.

Okamoto, F., B. Phinezy, Bohemia, The Local Metric Dimension of A Graph, Matematica Bohemica Vol 135 (2010), 239-255.

Wallis, W. D., E. T. Baskoro, M. Miller, dan Slamin, Edge Magic Total Labeling, Australasian Journal of Combinatorics 22 (2000), 1-14.

Yero, D. Kuziak, and J. A. Rodriguez-Velazquez, On the metric dimension of corona product graphs}, Computers & Mathematics with Application Vol 61, (2011), 2793 - 2798.


Refbacks

  • There are currently no refbacks.


ISSN: 2541-2205

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View IJC Stats