On the local metric dimension of t-fold wheel, Pn o Km, and generalized fan
Abstract
Let G be a connected graph and let u, v ∈ V(G). For an ordered set W = {w1, w2, ..., wn} of n distinct vertices in G, the representation of a vertex v of G with respect to W is the n-vector r(v∣W) = (d(v, w1), d(v, w2), ..., d(v, wn)), where d(v, wi) is the distance between v and wi for 1 ≤ i ≤ n. The set W is a local metric set of G if r(u ∣ W) ≠ r(v ∣ W) for every pair u, v of adjacent vertices of G. The local metric set of G with minimum cardinality is called a local metric basis for G and its cardinality is called a local metric dimension, denoted by lmd(G). In this paper we determine the local metric dimension of a t-fold wheel graph, Pn ⊙ Km graph, and generalized fan graph.
Full Text:
PDFDOI: http://dx.doi.org/10.19184/ijc.2018.2.2.4
References
Intaja, S. and T. Sitthiwarttham, Some Graph Parameters of Fan Graph, International Journal of Pure and Applied Mathematics 80 (2) (2012), 217-223.
Ningsih, E. U. S., N. Estuningsih, dan L. Susilowati, Dimensi Metrik Lokal pada Graf Hasil Kali Comb dari Graf Siklus dan Graf Lintasan}, Jurnal Matematika 1 (2014), 24-33.
Kristina, M., N. Estuningsih, and L. Susilowati, Dimensi Metrik Lokal pada Graf Hasil Kali Comb dari Graf Siklus dan Graf Bintang, Universitas Airlangga (2014), 1-9.
Rimadhany, R., Dimensi Metrik Lokal dari Graf Circulant, Institut Teknologi Sepuluh November (2017), 1-92.
Rodriguez-Velazquez, J. A., G. A. Barragan-Ramirez, and C. G. Gomez, On The Local Metric Dimension of Corona Product Graphs, Bull. Malays. Math. Sci. Soc. 39 (2016), 157-173.
Okamoto, F., B. Phinezy, Bohemia, The Local Metric Dimension of A Graph, Matematica Bohemica Vol 135 (2010), 239-255.
Wallis, W. D., E. T. Baskoro, M. Miller, dan Slamin, Edge Magic Total Labeling, Australasian Journal of Combinatorics 22 (2000), 1-14.
Yero, D. Kuziak, and J. A. Rodriguez-Velazquez, On the metric dimension of corona product graphs}, Computers & Mathematics with Application Vol 61, (2011), 2793 - 2798.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.