Edge magic total labeling of lexicographic product C4(2r+1) o ~K2 cycle with chords, unions of paths, and unions of cycles and paths

Inne Singgih


An edge magic total (EMT) labeling of a graph G = (V, E) is a bijection from the set of vertices and edges to a set of numbers defined by λ : VE → {1, 2, ..., ∣V∣ + ∣E∣} with the property that for every xyE, the weight of xy equals to a constant k, that is, λ(x) + λ(y) + λ(xy) = k for some integer k. In this paper given the construction of an EMT labeling for certain lexicographic product $C_{4(2r+1)}\circ \overline{K_2}$, cycle with chords [c]tCn, unions of paths mPn, and unions of cycles and paths m(Cn1(2r + 1) ∪ (2r + 1)Pn2).


edge magic total labeling; lexicographic product; cycle with chords; unions of paths; unions of cycles and paths

Full Text:



R.M. Figuera-Centeno, R. Ichisima, F.A. Muntaner-Batle, A. Oshima, A magical approach to some labeling conjectures, Discuss. Math. Graph Theory, 31, (2011) 79-113.

R.M. Figuera-Centeno, R. Ichisima, F.A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math., 231 (2001) 153--168.

R.M. Figuera-Centeno, R. Ichisima, F.A. Muntaner-Batle, On super edge-magic graphs, Ars Combin., 64 (2002) 81--95.

R.M. Figuera-Centeno, R. Ichisima, F.A. Muntaner-Batle, On edge-magic labelings of certain disjoint unions of graphs, Australas. J. Combin., 32 (2005) 225--242.

S. Cichacz-Przenioslo, D. Froncek, I. Singgih, Vertex magic total labelings of 2-regular graphs, Disc. Math. 340(1) (2017), pp. 3117-3124.

A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.

J.A. MacDougall, W.D. Wallis, Strong edge-magic labeling of a cycle with a chord, Australas. J. Combin., 28 (2003) 245--255.

A.M. Marr, W.D. Wallis, Magic Graphs, second ed., Springer, 2013.

I. Singgih, New methods for magic total labelings of graphs, Master Thesis, Department of Mathematics and Statistics, University of Minnesota Duluth, 2015.

K. Wijaya, E.T. Baskoro, Pelabelan total sisi-ajaib pada hasilkali dua graf, Proc. Seminar MIPA, ITB Bandung Indonesia, October (2000).

DOI: http://dx.doi.org/10.19184/ijc.2018.2.2.6


  • There are currently no refbacks.

ISSN: 2541-2205

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View IJC Stats