New families of star-supermagic graphs
Abstract
edge in $E(G)$ belongs to a subgraph of $G$ isomorphic to $K_{1, n}$. The
graph $G$ is $K_{1, n}$-supermagic if there exists a bijection $f : V(G)
\cup E(G) \rightarrow \{1, 2, 3, \cdots, |V(G) \cup E(G)|\}$ such
that for every subgraph $H'$ of $G$ isomorphic to $K_{1, n}$, $\sum_{v \in
V(H')} f(v) + \sum_{e \in E(H')} f(e)$ is a constant and $f(V(G)) = \{1, 2, 3, \cdots, |V(G)|\}$. In such a case, $f$ is called a $K_{1, n}$-supermagic labeling of $G$. In this paper, we give a method how to construct $K_{1, n}$-supermagic graphs from the old ones.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.19184/ijc.2020.4.2.4
References
H. Enomoto, A. Llado, T. Nakamigawa, and G. Ringel, Super edge magic graphs, SUT J. Math., 34 (1998), 105–109.
J.A. Gallian, A dynamic survey of graph labelings, Electron. J. Combin., 14 (2019) # DS6.
A. Gutiérrez and A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput., 55 (2005), 43–56.
P. Jeyanthi and P. Selvagopal, Construction of supermagic graphs, Communicated.
A. Kotzig and A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull., Vol. 13 (4), (1970), 451–461.
K.W. Lih, On magic and consecutive labelings of plane graphs, Utilitas Math., 24 (1983), 165–197.
A. Lladó and J. Moragas, Cycle-magic graphs, Discrete math., 307 (23), (2007), 2925–2933.
A.A.G. Ngurah, A.N.M. Salman, and L. Susilowati, H-supermagic labelings of graphs, Discrete Math., 310 (8), 1293–1300.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.