Local inclusive distance antimagic coloring of graphs

Fawwaz Fakhrurrozi Hadiputra, Mohammad Farhan, Mukayis Mukayis, Suhadi Wido Saputro, Tita Khalis Maryati

Abstract


For a simple graph G, a bijection f : V(G) → [1,|V (G)|] is called as a local inclusive distance antimagic (LIDA) labeling of G if w(u) ≠ w(v) for every two adjacent vertices u,vV(G) with w(u) = ∑xN [u]f(x). A graph G is said to be local inclusive distance antimagic (LIDA) graph if it admits a LIDA labeling. The function w induced by f also can be seen as a proper vertex coloring of G. The local inclusive distance antimagic (LIDA) chromatic number of G, denoted by χlida(G), is the minimum number of colors taken over all proper vertex colorings induced by LIDA labelings of G. In this paper, we study a LIDA labeling of simple graph. We provide some basic properties of LIDA labeling for any simple graphs. The LIDA chromatic number of certain multipartite graphs, double stars, subdivision of graphs and join product of graphs with K1 are also investigated. We present an upper bound for graphs obtained from subdivision of super edge-magic total graphs. Furthermore, we present some new open problems.

Keywords


local antimagic; inclusive distance labeling; vertex coloring

Full Text:

PDF

DOI: http://dx.doi.org/10.19184/ijc.2024.8.1.5

References

M. Anholcer, S. Cichacz, I. Peterin, and A. Tepeh, Distance magic labeling and two products of graphs, Graphs Combin., 31(5) (2015) 1117--1124.

S. Benna, On $Sigma$ and ∑' labelled graphs, Discrete Math., 309 (2009) 1783--1787.

S. Cichacz and D. Froncek, Distance magic circulant graphs, Discrete Math., 339(1) (2016) 84--94.

N. J. Cutinho, S. Sudha and S. Arumugam, Distance antimagic labelings of Cartesian product of graphs, AKCE Int. J. Graphs Combin., 17(3) (2020) 940--942.

Dafik, R. Alfarisi, R. M. Prihandini, R. Adawiyah and I. H. Agustin, Inclusive distance antimagic graphs, AIP Conf. Proc. 2014 (2018) 020083.

Darmaji, S. Wahyudi, Rinurwati and S. W. Saputro, On the construction of super edge-magic total graphs, Electron. J. Graph Theory Appl. 10(1) (2022), 301–-309.

T. Divya and S. D. Yamini, Local distance antimagic vertex coloring of graphs, arXiv:2106.01833v1 (2021).

H. Enomoto, A. Llado, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math., 34 (1998) 105–-109.

R. Figueroa-Centeno, R. Ichishima, and F. Muntaner-Batle, On edge-magic label-ings of certain disjoint unions of graphs, Australas. J. Combin., 32 (2005) 225--242.

R. Figueroa-Centeno, R. Ichishima, F. Muntaner-Batle and A. Oshima, A magical approach to some labeling conjectures, Discussiones Math. Graph Theory, 31 (2011) 79--113.

A.K. Handa, A. Godinho, and T. Singh, On local distance antimagic labeling of graphs, AKCE Int. J. Graph Combin., 21(1) (2024) 91-–96.

N. Kamatchi and S. Arumugam, Distance antimagic graphs, J. Combin. Math. Combin. Comput. 64 (2013) 61--67.

A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451--461.

J. Li, B. Wang, Y. Gu and S. Shao, Super edge-magic total labeling of combination graphs, Eng. Lett., 28(2) (2020) 412--419.

M. Miller, C. Rodger, and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin., 28 (2003) 305--315.

V. Priyadharshini and M. Nalliah, Local distance antimagic chromatic number for the union of complete bipartite graphs, Tamkang J. Math.}, (2023) https://info-center.math.tku.edu.tw/index.php/TKJM/article/view/4804

V. Priyadharsini and M. Nalliah, Local distance antimagic chromatic number for the union of star and double star graphs, Ukrains’kyi Matematychnyi Zhurnal, 75(5) (2023), 669--682.

R. Simanjuntak, T. Nadeak, F. Yasin, K. Wijaya, N. Hinding and K. A. Sugeng, Another antimagic conjecture, Symmetry, 13(11) (2021) 2071.

R. Simanjuntak and A. Tritama, Distance antimagic product graphs, Symmetry, 14(7) (2022) 1411.

I. Singgih, New methods for magic total labelings of graphs, Masters Thesis, Department of Mathematics and Statistics, U. Minnesota Duluth, 2015.

R. Y. Wulandari and R. Simanjuntak, Distance antimagic labelings of product graphs, Electron. J. Graph Theory Appl. 11(1) (2023) 111--123.


Refbacks

  • There are currently no refbacks.


ISSN: 2541-2205

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View IJC Stats