On Coloring of Fractional Powers of Star, Wheel, Friendship, and Fan Graphs
Abstract
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.19184/ijc.2024.9.1.6
References
G. Agnarsson and M. M. Halldorsson, Coloring powers of planar graphs, SIAM J. Discrete Math., 16(4) (2003), 651–662.
M. Anastos, S. Boyadzhiyska, S. Rathke and J. Rue, On the chromatic number of powers of subdivisions of graphs, Discrete Applied Math., 360 (2025), 506–511.
F. A. C. C. Chalub, An asymptotic expression for the fixation probability of a mutant in star graphs, Journal of Dynamics and Games, 3(3) (2016), 217–223.
G. Chartrand and P. Zhang, A first course in graph theory, Dover Publications (2012).
S. Hartke, H. Liu and S. Petrıckova, On coloring of fractional powers of graphs, arXiv (2012).
Z. R. Himami and D. R. Silaban, On local antimagic vertex coloring of corona products related to friendship and fan graph, Indonesian Journal of Combinatorics, 5(2) (2021), 110–121.
M. N. Iradmusa, On colorings of graph fractional powers, Discrete Math., 310 (10–11) (2010), 1551–1556.
M. Mozafari-Nia and M. N. Iradmusa, On incidence coloring of graph fractional powers, Opuscula Math., 43 (1), (2023), 109–123.
K. H. Rosen, Discrete mathematics and its applications (8th edition), McGraw-Hill Education (2019).
G. E. Turner III, A generalization of Dirac’s theorem: subdivisions of wheels, Discrete Math., 297 (1–3) (2005), 202–205.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.