### Hamming index of graphs with respect to its incidence matrix

#### Abstract

#### Keywords

#### Full Text:

PDFDOI: http://dx.doi.org/10.19184/ijc.2022.6.2.4

#### References

A. B. Ganagi, H. S. Ramane, Hamming distance between the strings generated by adjacency matrix of a graph and their sum, Algebra Discrete Math. 22 (2016), 82-93.

F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.

W. Imrich, S. Klavzar, A simple O(mn) algorithm for recognizing Hamming graphs, Bull. Inst. Combin. Appl. 9 (1993), 45-56.

S. Klavzar, I. Peterin, Characterizing subgraphs of Hamming graphs, J. Graph Theory 49 (2005), 302-312.

B. Kolman, R. Busby, S. C. Ross, Discrete Mathematical Structures, Prentice Hall of India, New Delhi, 2002.

H. S. Ramane, A. B. Ganagi, Hamming index of class of graphs, Int. J. Curr. Engg. Tech., (2013), 205-208.

H. S. Ramane, V. B. Joshi, R. B. Jummannaver, V. V. Manjalapur, S. C. Patil, S. D. Shindhe, V. S. Hadimani, V. K. Kyalkonda, B. C. Baddi, Hamming index of a graph generated by an edge-vertex incidence matrix, Int. J. Math. Sci. Engg. Appl. 9 (2015), 93-103.

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.